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Abstract 
 

This research compares a variety of implied volatility specifications incorporated 
into the Black model for the pricing and hedging of the TAIEX option market. The specific 
aim of the research is to test the composite volatility and dynamic selection specifications. 
The former contains three methods for calculating composite volatility: the simple, the 
minimum error-weighted average and the geometric weighted average. The latter selects, 
day by day, the volatility model which outperforms others to carry out forecasting for the 
next day. The result indicates that the model-free specification ranks the first as the pricing 
option, and the composite volatility second, while the dynamic selection model is not 
prominent. Regarding hedging performances, the composite volatility is outstanding 
compared to the others, second is the model-free specification and the dynamic selection 
model falls behind. 
 
 
Keywords: Composite Forecasting; Index Option; Implied Volatility; Option Pricing; 

Option Hedging 
 
1.  Introduction 
On December 24, 2001, the Taiwan Stock Exchange Capitalization Weighted Stock Index Options 
Contracts (TAIEX Options) started trading on the Taiwan Futures Exchange; it was the first time 
options had been traded in Taiwan. At first, the daily average trading volume was only 856 contracts in 
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2001; the market grew fast, and the daily average trading volume increased to 372,519 contracts in 
2008. 

Based on the no-arbitrage condition and dynamic hedging with underlying assets and cash, 
Black and Scholes (1973) introduced the famous Black-Scholes option pricing model. There are six 
parameters in this model: the current price of the underlying asset, strike price, risk-free rate, volatility, 
time to expiration and dividend rate. With the exception of volatility, the other parameters can be 
obtained by observing the data in the market; therefore, the estimation of volatility is of great 
importance in terms of pricing and hedging. Previous studies estimated the volatility in two ways: 
firstly, the historic volatility based on past trading information of the underlying assets, and secondly, 
the implied volatility based on the cross-section market data. This study focuses on implied volatility 
models. Theoretically, options with the same underlying assets are supposed to have the same implied 
volatility; however in practice, different implied volatilities for options with the same underlying assets 
may be obtained due to different expiration dates or features. As a result, previous literature shows that 
various weighted average methods were developed for implied volatilities. Besides adopting the 
simplest equally-weighted average implied volatility, the study also refers to the Vega-weighted 
average by Latane and Rendleman (1976), the elasticity-weighted average by Chiras and Manaster 
(1978), the volume-weighted average by Day and Lewis (1988) and the least square model by Beckers 
(1981) to calculate the implied volatility. 

The calculation of Black-Scholes implied volatility involves specific pricing models. However, 
model assumptions are not necessarily consistent with actual practice. Hence, in addition to the Black-
Scholes implied volatility model, this study also uses the volatility index (VIX) and model-free implied 
volatility models, both of which do not involve any pricing models. VIX was introduced by the 
Chicago Board Options Exchange (CBOE) in 1993. On September 22, 2003, the CBOE began 
disseminating price level information using a revised methodology for the CBOE VIX; a series of 
index options with different exercise prices was used for the implied volatility, but the formula did not 
involve any pricing models in order to fully reflect the market dynamics. In addition, countries such as 
France, Germany and Switzerland have developed VIX for their own equity markets as a reference for 
short-term volatility for market participants. Lee et al. (2005) compared the construction 
methodologies of the volatility indices across different countries and used the simulated data of the 
TAIEX index options to construct the VIX for TAIEX and test its forecasting power. Their results 
suggest that VIX is a good estimator of future volatility and a good contrarian trading indicator when 
the market plunges. 

Britten-Jones and Neuberger (2000) deduced a model-free implied volatility that is the expected 
sum of squared returns under a risk neutral measure. The only criterion for model-free implied 
volatility is no arbitrage, and the formula does not involve any option pricing model. However, the 
model-free implied volatility in Britten-Jones and Neuberger (2000) does not include potential asset 
jumps. Jiang and Tian (2005) extended the model to include asset jumps and used observed option 
prices to calculate the implied volatility. 

A huge number of studies on volatility models have been conducted, many of which focus on 
the predictive power or information content of implied volatility, such as Latane and Rendleman 
(1976), Chiras and Manaster (1978), Beckers (1981), Gemmill (1986), Day and Lewis (1992, 1993), 
Canina and Figlewski (1993), Christensen and Prabhala (1998), Gwilym and Buckle (1999), 
Christensen and Hansen (2002), and Szakmary et al. (2003). The studies compared the predictive 
power of implied volatility and historic volatility on realized volatility, prediction error and the bias of 
information content; different results were yielded. Furthermore, Chuang et al. (2009) took TAIEX 
Options as a case study to compare the mean absolute error and root mean square error, using 15 
volatility models: the common volatility models used in previous studies, the VIX implied volatility, 
model-free implied volatility, the Corrado & Su and SGT implied volatility and the volatility model 
containing intraday information, as specified in Parkinson (1980) and Yang and Zhang (2000). Chuang 
et al. (2009) discovered that with the exception of the EGARCH volatility, the predication error under 
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historic volatility is larger than it is under the implied volatility. As for option pricing and hedging, 
Chuang et al. (2009) also found that implied volatility models perform better in general. 

The Black-Scholes model, a benchmark model in option pricing, is also widely used in the 
industry. Black (1990) made the following comments: 

“I sometimes wonder why people still use the Black and Scholes formula, since it is based on 
such simple assumptions—unrealistically simple assumptions. Yet that weakness is also its greatest 
strength. People like the model because they can easily understand its assumptions.” 

On the other hand, previous studies show that on average, the implied volatility performs better 
in prediction, pricing and hedging. For this reason, we decided to study implied volatility models 
further. 

The study compares pricing and hedging performance in different implied volatility models 
applicable to the Black-Scholes model, and discusses reasons for bias. In particular, this study also 
introduces composite volatility and dynamic selection approach to assess their applications in option 
pricing and hedging performances. The concept of composite prediction is based on Bates and Granger 
(1969), and extended by Granger and Ramanathan (1984). We integrated these two models in the hope 
that they will improve volatility predictions and thereby reduce pricing and hedging errors. Ederington 
and Guan (2002) studied the composite implied volatility; however, they only made predictions on 
realized volatility without examining pricing or hedging performance. We decided to study these issues 
further. Under dynamic selection, the best available volatility model was selected at each prediction 
date. In other words, the model changes for each day, so it is called the dynamic selection model. To 
our knowledge, this is the first study to apply the dynamic selection approach on options research. 

The paper is organized as follows: firstly, the introduction; secondly, our methodology; thirdly, 
the data processing; fourthly, the empirical analysis; and finally, the conclusion. 
 
 

2.  Methodology 
There are four implied volatility models used in the study: Black implied volatility (with different 
weighting schemes), composite implied volatility, model-free implied volatility and dynamic selection 
implied volatility. In this section, we introduce these implied volatility models, followed by 
measurements for option pricing and hedging performance. Finally, we discuss the error analysis. 
 
2.1. Black Model and Black Implied Volatility 

The implied volatility is solved using the price of an option working with the option pricing model in 
reverse; the estimation is based on the pricing model. The Black-Schole Model or Black Model is used 
in most studies. 

TAIEX Options and TAIEX spot are traded in different markets, and the option market closes 
15 minutes later than the spot market does; therefore, a problem of non-synchronous trading exists. 
Second, the TAIEX spot is a basket of securities; it is necessary to replicate the TAIEX spot in order to 
arbitrage, which is costly and makes arbitrage difficult. Third, it is necessary to estimate the dividend 
rate of the index when applying the Black-Scholes model to option pricing; however, making an 
accurate estimation is difficult and challenging. 

Previous studies often solve the aforementioned three issues using futures contracts. First, the 
futures price reflects overall market conditions. In estimating the volatility, the implied volatility based 
on the futures price integrates all variables that affect stock volatility; it avoids the non-synchronous 
problem of index price (Feinstein, 1989) and sampling (Hwang and Satchell, 2000), since the closing 
index does not necessarily reflect the closing price of all index components. Second, to build a 
portfolio of a basket of stocks replicating the index option is costly; therefore, the market maker for 
index options tends to use futures instead of spot in hedging. Lastly, the futures price reflects the 
carrying costs; it includes the dividend rate. Hence it is no longer necessary to estimate the dividend 
rate (Duan and Zhang, 2001). As a result, the Black model is often chosen in empirical research 
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(Jorion, 1995; Hwang and Satchell, 2000; Duan and Zhang, 2001). This study replaces the TAIEX spot 
price with the TAIEX futures price. The Black Model is as follows: 
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where C is the call price; P is the put price; F is the futures price; K is the strike price; τ is the time to 
maturity; r is the risk-free rate;  is the volatility; and N(‧) is the cumulative probability density 
function of the standard normal distribution. 
 
Equally-Weighted Average Implied Volatility 
Having obtained the implied volatility for each option contract, we can use the equally-weighted 
average to assess the representative implied volatility so that each contract is covered in the 
calculation, as the following equation shows: 
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where EW,t is the equally-weighted average volatility at time t; j = 1, 2,…, k, and k is the number of 
options observed daily; IVj is the implied volatility of the jth TAIEX option on the same observation 
day. 
 
Vega-Weighted Average Implied Volatility 
Options at different price levels are not equally sensitive to the volatility; hence, it is inappropriate to 
allocate the same weight. Latane and Rendleman (1976) suggested the Vega-weighted average, where 
an implied volatility is given a larger weight if the option price is more sensitive to the volatility. Since 
at-the-money options have the largest Vega values, they are given larger weights. The following is the 
formula for the Vega-weighted average: 
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where Vega,t is the Vega-weighted average volatility; Dj = ∂Vj/∂j is the Vega value of the jth TAIEX 
option contract on the same observation day; V is the call or put price; and k and IVj are defined as 
before. 
 
Elasticity-Weighted Average Implied Volatility 
Chiras and Manaster (1978) weighted the volatility according to its elasticity to the option price. This 
reflects options sensitivities at different price levels. The following is the formula for elasticity-
weighted volatility: 
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where ELS,t is the elasticity-weighted average implied volatility; Ej is the price elasticity of the 
volatility, which is (∂Vj/∂j)(j/Vj); and Vj, k and IVj are defined as before. 
 
Volume-Weighted Average Implied Volatility 
The trading volume indicates market efficiency, reflecting market volatility. As a result, Day and 
Lewis (1988) weighted the volatility based on the daily trading volume, giving options with a larger 
volume a larger weight. The formula is as follows: 
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where VW is the volume-weighted average of the implied volatility; TVj is the trading volume of the jth 
TAIEX option on the same observation day; and Vj, k and IVj are defined as before. 
 
Least-Square Implied Volatility 
Options at different price levels are not equally sensitive to price fluctuations; therefore, they also have 
different explanatory powers for the volatility. The Vega-weighted average reflects the sensitivity of 
at-the-money options and reduces volatility smile. Beckers (1981) combined the least square error 
method and Vega-weighted average to formulate the volatility: 
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where MW is the least-square volatility; VM,j is the market price of the jth option; and VBl,j(σMW) is the 
theoretical option price given σMW, under the Black model. 
 
2.2. Composite Implied Volatility 

We applied the following three averages for calculating composite implied volatility: the simple 
average, the minimum error-weighted average and the geometric average. First, we introduced the 
simple average implied volatility: 

CEW,t = (EW,t + Vega,t + ELS,t + VW,t + MW,t)/5 (7) 
Specifically, this composite implied volatility is the simple average of the aforementioned 

implied volatilities. The weights of the minimum error-weighted average are assigned according to the 
minimum mean squared error criterion. That is, the minimum error-weighted average estimates the 
daily model deviation, and then different weights are assigned according to their deviations. Suppose 
the implied volatility i of model i is calculated daily. Meanwhile, the root mean squared error (RMSE) 
under the given model on that day is defined as: 
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where k is the number of options observed every day; VM,j is the market price of the jth option; and 
VBL,j(i) is the theoretical price under Black model given i. Granger and Ramanathan (1984) 
suggested the weight for model i to be: 
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where i is the RMSE of the ith model. According to the formula, models with a smaller RMSE have 
larger weights. The minimum error-weighted average CMW is: 

CMW,t = w1EW,t + w2Vega,t + w3ELS,t + w4VW,t + w5MW,t (10) 
Lastly, we introduce the geometric average volatility as below: 
CGW,t = (EW,t Vega,t ELS,t VW,tMW,t)

1/5 (11) 
 
2.3. Model-Free Volatility 

Individual implied volatility models all require a financial model to perform volatility estimation. 
However, assumptions in the model often deviate from the practice, which implies errors. Model-free 
volatility, by avoiding modeling estimation errors, may better reflect market dynamics. This study used 
the VIX volatility and model-free implied volatility as specified below. 
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VIX Implied Volatility 
To revise VIX, the Chicago Board Options Exchange (CBOE) used a series of index options with 
different strike prices to calculate the implied volatility. The calculation does not involve any pricing 
models, as in the following formula: 
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where VIX,t is VIX’s volatility; F is the expected index derived from the option price; T is the duration; 
Ki is the strike price for the ith out-of-money option; we used the call price if Ki > F and put price if Ki < 
F; △Ki = 0.5×(Ki+1  Ki1); K0 represents the first strike price lower than the expected index F; r is the 
risk-free rate; Q(Ki) is the average of the bid and ask given to an option with a strike price of Ki. 
 
Model-free Implied Volatility 
Jiang and Tian (2005) extended the model-free implied volatility in Britten-Jones and Neuberger 
(2000) to asset price processes with jumps and developed a simple method for implementing it using 
observed option prices. Such volatility is solely derived from the no-arbitrage condition and involves 
no pricing models. We used the numerical methods in Jiang and Tian (2005) to calculate the model-
free implied volatility: 
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where MF is the model-free implied volatility;  is the time to maturity; F is the futures price; and K is 
the strike price; C(,K) is the option price. 
 
2.4. Dynamic Selection Implied Volatility 

The dynamic selection implied volatility model searches for the minimum RMSE (see Equation (8)) 
among the aforementioned five Black implied volatility models, three composite implied volatility 
models and two model-free volatility models. Therefore, different models are used in different periods. 
We selected the model with minimum root mean square error to represent the current implied 
volatility, that is: 

DS =  with minimum  defined by Equation (8) 
 
2.5. Option Pricing and Hedging Performance 

We adopted the out-of-sample performance evaluation in this research. First, the data on the tth day 
were used to estimate the implied volatility, and then we applied the estimated implied volatility to the 
option pricing model for the theoretical option price on the t+1th day. Next, we compared the 
theoretical and market price of the option on day t+1, calculated the errors and evaluated the out-of-
sample predictability. We used MAE and RMSE to determine the model fitness for performance 
evaluation. The equation for the performance evaluation is as follows: 
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N is the total number of options; other symbols follow the same definitions as in the previous 
session. 

The study adopted the hedge model in Dumas, Fleming and Whaley (1998). Assuming that 
option returns can be replicated by continuously adjusting the portfolio, and ignoring the restrictions on 
trading time and trading costs, we analyzed the hedge error under each model. Let h be the hedge ratio. 
According to the definition in Dumas, Fleming and Whaley (1998), the hedging error can be shown as: 
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where et is the hedging error; ∆Cactual,t is the actual change in option price; and n is the number of 
hedging days. Dumas, Fleming and Whaley (1998) further expressed the hedging error, after 
deduction, in the following equation: 

, mod ,t actual t el te C C    (17) 

where ∆Cmodel,t represents changes in the theoretical option price. Assuming we used the correct model 
to determine the hedge ratio h, then the expected value and variance for the above hedging error et are 
supposed to be zero. We used Equation (17) to construct the MAE and RMSE for hedging 
performance. 
 
2.6. Error Analysis 

We then applied regression analysis to the error term; this will be a reference to future pricing or 
hedging. For each contract, let the absolute error AE = |VM – VBL| be the dependent variable, and the 
price F/K, expiration (), risk-free rate (r), trading volume (TV), open interests (OI), and put-call 
dummy variable (CP) be the independent variables in the following regression: 

AE = 0 + 1 F/K + 2 + 3 r + 4 TV + 5 OI + 6 CP + e (18) 
The same analysis can also be applied to the hedging error. 

 
 
3.  Data Processing 
The trading volume of TAIEX Options in the Taiwan Stock Exchange was significantly lower at first. 
The market was not as mature and efficient; there may have only been a few transactions for in-the-
money or out-of-the-money options. However, since October 2002, the daily average volume of 
TAIEX options has been at least 10,000 contracts, and the market has become more mature. This study 
sampled 89,590 contracts from January 1, 2003 to June 30, 2009; the data includes: TAIEX options, 
TAIEX futures, TAIEX and the risk-free rate, where the data for options and futures were from the 
Taiwan Futures Exchange, and the data for TAIEX and risk-free rate were from the Taiwan Economic 
Journal Database (TEJ). 

The option and futures contracts differ in expiration terms, so we selected futures to 
accommodate the expiration date of options. Foreign studies often use the following rates as the risk-
free rate: short-term government bonds, short-term treasury bills or the London Interbank Offered Rate 
(LIBOR) with the mature day the same as, or similar to, the expiration of the option. Domestic studies 
often use the bank-announced term deposit rates (for example, the Bank of Taiwan, First Commercial 
Bank﹐Hua Nan Commercial Bank and Chang Hwa Commercial Bank). 

This study selected the risk-free rates that have a maturity the same as, or similar to, the 
expiration of the option; the benchmark for the risk-free rate is the 1-month, 3-month, 6-month, 9-
month, and 1-year term deposit rates announced by the Bank of Taiwan. The following is how we 
selected the rate: if the time to option expiration ranges from 1 to 40 days, the 1-month term deposit 
rate applies; if it is 41 to 70 days, the 3-month term deposit rate applies; if 71 to 150 days, the 6-month 
term deposit rate applies; if 151 to 210 days, the 9-month term deposit rate applies; if 211 days or 
more, the 1-year term deposit rate applies. The term deposit rates announced are annual percentage 
rates; therefore we first converted the rates into continuous compounding rates for model specification. 

Next, we used the following criteria to select the data: the price level of options, trading 
volume, no-arbitrage condition and time to expiration. First, the option price cannot be lower than 3 
points. If an option price is too low, it may be affected by the bid-ask spread and trading costs; such 
options are often removed in the studies, for example Schmalensee and Trippi (1978), Feinstein 
(1989), and Donders and Vorst (1996). The Taiwan Futures Exchange regulates that, besides the 
premium and margin, investors are supposed to pay fees and transaction tax in option transactions; 
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either party (buyer or seller) pays the transaction tax; i.e., the transaction tax is imposed on option 
buyers and sellers. The tax rate is 1.25 thousandth of the premium before the expiration and 0.25 
thousandth of the settlement value at the expiration. The fee standard is determined by securities firms; 
in general, the fee is NT$ 128 per contract. As a result, option prices below 3 points are excluded from 
our dataset. 

Second, the volume cannot be less than 10 contracts. If an option is not traded on a certain day, 
or only has a small volume traded by the market maker, these transactions do not reflect market 
conditions. In reference to George and Longstaff (1993), we filtered options with a volume of less than 
10. 

Third, the option price cannot fall below the lower bound of arbitrage. If the price is below the 
lower bound of risk-free arbitrage, the market is inefficient. We screened out such data to avoid 
unreasonably implied volatilities. 

Fourth, the remaining time to expiration cannot be less than 5 business days. As the expiration 
date approaches, the option price is more likely to be affected by the price of the underlying asset, 
creating higher price volatility. Thus, we removed the data if the remaining time to expiration was less 
than 5 business days. 
 
 
4.  Empirical Results 
When comparing option pricing and hedging errors, we evaluated the performance of the full sample, 
the call options, and put options. In addition, according to moneyness, options (call option: F/K; put 
option: K/F) were classified as at the money (ATM, 0.97~1.03), in the money (ITM, 1.03~1.1), and out 
of the money (OTM, 0.9~0.97). The mean absolute error (MAE) and the root mean squared error 
(RMSE) were used to measure pricing and hedging performances in all implied volatility models. We 
also investigated important factors resulting in the difference between pricing and hedging 
performances. 
 
4.1. Pricing Performances of TAIEX Options 

Table 1 shows the pricing performances for all out-of-sample models. The volatility model which best 
reflected the option prices for the call option, put option and options with different moneyness was thus 
determined. This result indicated that the model-free implied volatility model (BK_MF) had the best 
pricing performance across the samples and the subsamples of call options and put options. The three 
composite volatility models came in second. The dynamic selection model (BK_DS) did not yield a 
better performance. Of the three composite volatility models, the geometric average volatility model 
(BK_CGW) had the smallest pricing error, followed by the minimum error-weighted average model 
(BK_CMW). However, there were no significant differences among the three composite volatility 
models. 

With different moneyness, the out-of-sample performances were identical to full-sample 
results; that is, regardless of ITM, ATM or OTM, the model-free implied volatility model had the best 
performance, followed by the composite volatility models. We also found that OTM options had 
smaller pricing errors than ITM and ATM options probably because OTM options have lower prices, 
causing the absolute error to be smaller. 

Overall, the model-free model had the best out-of-sample pricing performance, followed by the 
composite volatility models. The model-free implied volatility models (i.e., BK_MF and BK_VIX) had 
a better pricing performance regardless of the call option, put option or different moneyness. On the 
contrary, the VIX volatility model did not have such a performance. As for the composite volatility 
models, the geometric weighted volatility model (BK_CGW) yielded the smallest pricing errors; the 
minimum error-weighted average model (BK_CMW) came in second. However, the dynamic selection 
model (BK_DS) did not significantly outperform other models. 
 
 



139 International Research Journal of Finance and Economics - Issue 99 (2012) 

 

Table 1: Out-of-the-sample Pricing Performance 
 

  Whole sample Out-of-the-money At-the-money In-the-money 
  MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

Whole 
sample 

BK_EW 7.37 (8) 11.24 (6) 6.78 (10) 10.46 (6) 8.27 (10) 11.65 (7) 7.97 (8) 12.19 (7) 

BK_Vega 8.32 (11) 15.98 (11) 7.35 (9) 14.55 (11) 8.20 (9) 
14.76 
(11) 

8.81 (11) 15.74 (11) 

BK_ELS 8.16 (10) 12.39 (10) 7.74 (11) 11.90 (10) 9.73 (11) 
13.54 
(10) 

8.71 (10) 13.08 (10) 

BK_VW 6.96 (5) 11.40 (7) 6.51 (1) 10.77 (7) 6.68 (1) 11.07 (5) 7.62 (4) 12.08 (5) 
BK_MW 7.03 (6) 10.76 (5) 6.37 (7) 9.70 (5) 7.53 (7) 11.10 (6) 7.95 (6) 12.12 (6) 
BK_CEW 6.83 (4) 10.58 (4) 6.21 (5) 9.68 (4) 7.24 (5) 10.62 (4) 7.63 (5) 11.76 (4) 
BK_CMW 6.81 (3) 10.57 (3) 6.20 (4) 9.67 (3) 7.20 (4) 10.59 (3) 7.62 (3) 11.75 (3) 
BK_CGW 6.80 (2) 10.56 (2) 6.19 (3) 9.65 (2) 7.19 (3) 10.58 (2) 7.61 (2) 11.74 (2) 
BK_VIX 7.64 (9) 10.26 (9) 7.05 (8) 11.47 (9) 8.13 (8) 12.72 (9) 8.31 (9) 12.99 (9) 
BK_MF 6.70 (1) 10.42 (1) 6.03 (2) 9.43 (1) 6.94 (2) 10.29 (1) 7.57 (1) 11.71 (1) 
BK_DS 7.26 (7) 11.59 (8) 6.78 (6) 10.82 (8) 7.39 (6) 11.75 (8) 7.96 (7) 12.34 (8) 

Call 

BK_EW 7.70 (8) 11.46 (7) 8.46 (9) 12.15 (8) 7.98 (8) 11.26 (7) 6.43 (5) 10.24 (5) 

BK_Vega 9.21 (11) 13.12 (11) 9.66 (11) 13.79 (11) 8.06 (9) 
14.26 
(11) 

6.50 (6) 10.95 (6) 

BK_ELS 8.47 (10) 12.63 (9) 9.37 (10) 13.67 (10) 9.44 (11) 
13.20 
(10) 

7.20 (9) 11.14 (9) 

BK_VW 7.07 (6) 11.53 (8) 7.08 (3) 11.59 (7) 6.63 (1) 11.02 (6) 6.89 (7) 11.00 (7) 
BK_MW 7.05 (5) 10.67 (5) 7.06 (2) 10.38 (1) 7.31 (6) 10.70 (5) 7.16 (8) 11.09 (8) 
BK_CEW 7.02 (4) 10.67 (4) 7.46 (7) 10.97 (6) 6.97 (5) 10.24 (4) 6.40 (3) 10.21 (2) 
BK_CMW 7.00 (3) 10.65 (3) 7.43 (6) 10.94 (5) 6.93 (4) 10.21 (3) 6.40 (2) 10.21 (3) 
BK_CGW 6.99 (2) 10.63 (2) 7.41 (5) 10.91 (4) 6.92 (3) 10.20 (2) 6.40 (4) 10.22 (4) 
BK_VIX 8.03 (9) 12.65 (10) 8.16 (8) 12.79 (9) 8.16 (10) 12.68 (9) 7.24 (10) 11.38 (10) 
BK_MF 6.90 (1) 10.53 (1) 7.27 (4) 10.73 (2) 6.67 (2) 9.90 (1) 6.37 (1) 10.18 (1) 
BK_DS 7.14 (7) 11.39 (6) 6.75 (1) 10.83 (3) 7.38 (7) 11.70 (8) 7.54 (11) 11.57 (11) 

Put 

BK_EW 7.03 (7) 11.00 (6) 5.15 (6) 8.49 (5) 8.57 (10) 12.04 (8) 9.83 (8) 14.18 (8) 
BK_Vega 7.41 (10) 12.72 (11) 5.09 (5) 11.10 (11) 8.34 (9) 14.26 (11) 11.59 (11) 15.12 (11) 
BK_ELS 7.84 (11) 12.14 (10) 6.15 (10) 9.88 (7) 10.04 (11) 13.88 (10) 10.54 (10) 15.08 (10) 
BK_VW 6.85 (5) 11.27 (7) 5.96 (8) 9.90 (8) 6.73 (1) 11.13 (5) 8.51 (5) 13.26 (2) 
BK_MW 7.01 (6) 10.86 (5) 5.71 (7) 8.99 (6) 7.76 (7) 11.50 (6) 8.89 (6) 13.26 (3) 
BK_CEW 6.63 (4) 10.50 (4) 5.00 (4) 8.24 (3) 7.51 (6) 11.00 (4) 9.10 (4) 13.38 (7) 
BK_CMW 6.62 (3) 10.48 (3) 4.99 (2) 8.24 (2) 7.47 (5) 10.97 (3) 9.08 (3) 13.36 (6) 
BK_CGW 6.62 (2) 10.48 (2) 5.00 (3) 8.25 (4) 7.46 (4) 10.95 (2) 9.06 (2) 13.34 (5) 
BK_VIX 7.25 (8) 11.84 (9) 5.97 (9) 10.02 (9) 8.09 (8) 12.76 (9) 9.60 (9) 14.69 (9) 
BK_MF 6.49 (1) 10.31 (1) 4.83 (1) 7.97 (1) 7.21 (2) 10.68 (1) 9.00 (1) 13.32 (4) 

BK_DS 7.39 (9) 11.78 (8) 46.80 (11) 10.80 (10) 7.40 (3) 11.79 (7) 8.46 (7) 13.21 (1) 
Note: EW= equal weighted vol., Vega = Vega weighted vol., ELS = elasticity weighted vol., VW = volume weighted 

vol., MW = min mean squared errors vol., CEW = composite simple weighted vol., CMW = composite min error-
weighted average vol., CGW = composite geometric weighted vol., VIX = VIX vol., MF = Model-free vol., DS = 
dynamic selection vol. 

 
4.2. Hedging Performances of TAIEX Options 

Table 2 shows the out-of-sample hedging performances across the samples and subsamples in 
accordance with the call option, put option and moneyness. The results indicate that in terms of 
composite volatility models, the geometric average volatility model had the best hedging performance 
in terms of the call option, the put option and options with different moneyness. However, there was no 
significant difference among these three volatility models. In the subsamples, the model-free volatility 
model had a smaller hedging error regardless of the call option, put option and different moneyness. 
For different moneyness, the composite volatility model had a better hedging performance across the 
samples and subsamples; the model-free model yielded a better performance in the subsamples of 
ATM and OTM call options. 
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Table 2: Out-of-the-sample Hedging Performance 
 

  Whole sample Out-of-the-money At-the-money In-the-money 
  MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

Whole 
sample 

BK_EW 4.02 (7) 7.25 (7) 3.42 (7) 6.39 (7) 4.44 (6) 7.59 (7) 5.26 (7) 8.73 (8) 
BK_Vega 4.18 (11) 7.85 (11) 3.73 (11) 7.16 (11) 4.99 (11) 8.33 (11) 5.49 (11) 9.21 (11) 
BK_ELS 4.01 (5) 7.20 (5) 3.41 (6) 6.32 (6) 4.41 (5) 7.52 (5) 5.25 (5) 8.69 (5) 
BK_VW 4.22 (9) 7.82 (10) 3.60 (9) 7.02 (10) 4.67 (9) 8.25 (10) 5.40 (9) 9.13 (10) 
BK_MW 4.31 (10) 7.35 (8) 3.74 (10) 6.49 (8) 4.97 (10) 7.99 (9) 5.44 (10) 8.71 (6) 
BK_CEW 3.90 (3) 7.09 (2) 3.27 (3) 6.19 (2) 4.31 (3) 7.43 (3) 5.18 (2) 8.60 (2) 
BK_CMW 3.90 (4) 7.09 (3) 3.27 (4) 6.19 (3) 4.31 (4) 7.44 (4) 5.18 (3) 8.60 (3) 
BK_CGW 3.90 (1) 7.08 (1) 3.27 (2) 6.17 (1) 4.30 (2) 7.43 (1) 5.18 (1) 8.59 (1) 
BK_VIX 4.13 (8) 7.45 (9) 3.49 (8) 6.55 (9) 4.58 (8) 7.83 (8) 5.34 (8) 8.84 (9) 
BK_MF 3.90 (2) 7.10 (4) 3.27 (1) 6.20 (4) 4.30 (1) 7.43 (2) 5.18 (4) 8.62 (4) 
BK_DS 4.02 (6) 7.24 (6) 3.37 (5) 6.29 (5) 4.46 (7) 7.56 (6) 5.25 (6) 8.71 (7) 

Call 

BK_EW 4.21 (6) 7.13 (6) 3.81 (6) 6.80 (6) 4.34 (6) 7.08 (6) 4.77 (6) 7.53 (6) 
BK_Vega 4.56 (11) 7.71 (11) 4.15 (11) 7.87 (11) 4.68 (11) 7.72 (11) 5.03 (11) 7.83 (11) 
BK_ELS 4.20 (5) 7.10 (5) 3.82 (7) 6.80 (7) 4.31 (5) 7.04 (5) 4.75 (5) 7.51 (5) 
BK_VW 4.42 (9) 7.74 (10) 4.00 (9) 7.51 (10) 4.55 (9) 7.71 (10) 4.90 (9) 7.84 (10) 
BK_MW 4.49 (10) 7.30 (8) 4.08 (10) 6.86 (8) 4.91 (10) 7.67 (9) 5.03 (10) 7.78 (9) 
BK_CEW 4.09 (3) 6.97 (3) 3.65 (3) 6.59 (3) 4.22 (3) 6.95 (3) 4.71 (3) 7.44 (2) 
BK_CMW 4.09 (4) 6.98 (4) 3.65 (4) 6.60 (4) 4.22 (4) 6.95 (4) 4.71 (4) 7.45 (3) 
BK_CGW 4.08 (2) 6.98 (2) 3.64 (2) 6.58 (2) 4.21 (2) 6.94 (2) 4.71 (1) 7.44 (1) 
BK_VIX 4.34 (8) 7.42 (9) 3.86 (8) 6.99 (9) 4.49 (8) 7.42 (8) 4.90 (8) 7.75 (8) 
BK_MF 4.07 (1) 6.96 (1) 3.63 (1) 6.57 (1) 4.20 (1) 6.92 (1) 4.71 (2) 7.47 (4) 
BK_DS 4.21 (7) 7.19 (7) 3.73 (5) 6.70 (5) 4.37 (7) 7.16 (7) 4.80 (7) 7.60 (7) 

Put 

BK_EW 4.32 (7) 7.37 (7) 3.05 (7) 5.96 (7) 4.54 (6) 8.07 (7) 5.87 (7) 10.02 (8) 
BK_Vega 4.63 (11) 7.86 (11) 3.23 (11) 6.61 (11) 4.86 (11) 8.53 (11) 6.15 (11) 10.68 (11) 
BK_ELS 4.31 (5) 7.30 (6) 3.03 (15) 5.81 (4) 4.51 (6) 7.99 (6) 5.86 (6) 9.97 (7) 
BK_VW 4.51 (9) 7.91 (10) 3.21 (9) 6.51 (10) 4.80 (9) 8.76 (10) 6.01 (10) 10.52 (10) 
BK_MW 4.62 (10) 7.39 (8) 3.41 (10) 6.11 (9) 4.84 (10) 8.31 (9) 5.96 (9) 9.74 (1) 
BK_CEW 4.211 (2) 7.20 (2) 2.91 (2) 5.76 (2) 4.41 (3) 7.90 (2) 5.76 (2) 9.84 (3) 
BK_CMW 4.211 (3) 7.21 (3) 2.91 (3) 5.77 (3) 4.41 (4) 7.91 (3) 5.76 (3) 9.84 (4) 
BK_CGW 4.20 (1) 7.19 (1) 2.91 (1) 5.75 (1) 4.40 (1) 7.89 (1) 5.76 (1) 9.83 (2) 
BK_VIX 4.42 (8) 7.49 (9) 3.14 (8) 6.09 (8) 4.68 (8) 8.24 (8) 5.89 (8) 10.03 (9) 
BK_MF 4.21 (4) 7.23 (4) 2.92 (4) 5.83 (5) 4.40 (2) 7.91 (4) 5.77 (4) 9.87 (5) 
BK_DS 4.31 (6) 7.30 (5) 3.03 (6) 5.87 (6) 4.56 (7) 7.95 (5) 5.82 (5) 9.92 (8) 

Note: EW= equal weighted vol., Vega = Vega weighted vol., ELS = elasticity weighted vol., VW = volume weighted 
vol., MW = min mean squared errors vol., CEW = composite simple weighted vol., CMW = composite min error-
weighted average vol., CGW = composite geometric weighted vol., VIX = VIX vol., MF = Model-free vol., DS = 
dynamic selection vol. 

 
Overall, the model-free model performed best in terms of ATM and OTM call options; the 

composite volatility model performed better with respect to ITM call options and ITM, ATM and OTM 
put options. On the whole, the composite volatility models were the best, followed by the model-free 
volatility model and the dynamic selection model. 
 
4.3. Error Analysis 

Tables 3 and 4 show the results of the regression analysis for out-of-sample option pricing and hedging 
performances. 1, 2, 3, 4, 5 and 6 represent moneyness, time-to-maturity, risk-free rate, trading 
volume, open interest and estimates for the call-put dummy variable, respectively. Table 3 indicates 
that moneyness and time-to-maturity have a significant positive correlation to the absolute value of the 
pricing error, whereas the trading volume, open interest and call option have a significant negative 
correlation to the absolute value of the pricing error. 
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Table 3: Regression Analysis for Pricing Errors 
 
(AE = 0 + 1 F/K + 2 + 3 r + 4 TV + 5 OI + 6 CP + e) 

 0 1 2 3 4 5 6 adj-R2 

BK_EW 
-38.24500a 45.83000a 0.26111a 0.00001 -0.00018a -0.00011a -0.37380a 

0.14833 
(-38.5030) (49.6330) (44.6180) (1.1102) (-33.8990) (-35.5830) (-3.8216) 

BK_Vega 
-29.89200a 37.27400a 0.20560a 0.00001 -0.00013a -0.00011a -0.10789 

0.12050 
(-31.4240) (41.4160) (41.1800) (1.0912) (-28.2700) (-37.5440) (-1.1905) 

BK_ELS 
-48.88100a 57.67000a 0.29034a 0.00003 -0.00022a -0.00013a -0.11237 

0.14844 
(-46.8400) (60.0990) (43.8660) (1.2231) (-33.0310) (-35.8670) (-1.0283) 

BK_VW 
-30.97100a 35.82300a 0.29895a 0.00001 -0.00020a -0.00030a -0.52583a 

0.16268 
(-28.8790) (36.0750) (46.3300) (1.1099) (-15.1370) (-34.4720) (-4.9751) 

BK_MW 
-29.76600a 39.01500a 0.16903a 0.00002 -0.00014a -0.00012a 0.90927a 

0.09323 
(-32.2670) (44.0470) (37.9800) (1.1983) (-23.7840) (-36.3970) (9.8758) 

BK_CEW 
-33.02700a 40.24100a 0.22355a 0.00001 -0.00014a -0.00011a -0.20962a 

0.13244 
(-34.5790) (44.7000) (43.5200) (1.1101) (-30.2440) (-38.3580) (-2.2586) 

BK_CMW 
-32.82100a 40.00300a 0.22305a 0.00001 -0.00014a -0.00011a -0.22241a 

0.13215 
(-34.3680) (44.4310) (43.5050) (1.0999) (-30.0740) (-38.3570) (-2.3988) 

BK_CGW 
-32.79200a 39.98000a 0.22205a 0.00001 -0.00014a -0.00011a -0.23931a 

0.13177 
(-34.4150) (44.4760) (43.5520) (1.1123) (-30.0260) (-38.4510) (-2.5837) 

BK_VIX 
-32.72600a 41.05200a 0.27762a 0.00003 -0.00015a -0.00013a -0.85227a 

0.12200 
(-29.5390) (40.3070) (38.9160) (1.2302) (-26.0360) (-37.6230) (-7.3559) 

BK_MF 
-26.335a 35.99300a 0.28251a 0.00002 -0.00018a -0.00017a -0.96200a 

0.15754 
(-26.1003) (37.0590) (43.0890) (1.1999) (-26.2160) (-33.0290) (-9.9250) 

BK_DS 
 

-36.74900a 42.77500a 0.30625a 0.00001 -0.00010a -0.00011a 0.33420a 
0.14729 

(-33.3090) (42.1090) (44.5080) (1.0988) (-20.5930) (-33.4920) (3.1650) 

Note: AE = |VM – VBL|, F/K = moneyness,  = time-to-maturity, r = risk-free rate, TV = trading volume, OI = open 

interest, CP = dummy variable for call and put. 
a 

denotes significance at the 5% level. 

 
However, in the minimum error-weighted average volatility and the dynamic selection 

volatility models, call options have a significant positive correlation to the absolute value of the pricing 
error. Furthermore, the correlation between the risk-free rate and the absolute value of pricing errors is 
insignificant. The results above indicate that: (1) ITM tends to result in pricing errors in the volatility 
models, which accords with Table 1. (2) The pricing error also increases as the time-to-maturity 
becomes longer. (3) The risk-free rate does not affect the pricing error. (4) Contracts with higher 
trading volume and open interest have smaller pricing errors; and (5) Call options have smaller pricing 
errors compared to put options. However, for the minimum error-weighted average volatility and the 
dynamic selection volatility models, pricing errors for put options are greater than those for call 
options. 
 
Table 4: Regression Analysis for Hedging Errors 
 
(AE = 0 + 1 F/K + 2 + 3 r + 4 TV + 5 OI + 6 CP + e) 

 0 1 2 3 4 5 6 adj-R2 

BK_EW 
61.16800 0.90373 1.12480 0.00012 0.00399a -0.00106a 26.40500a 

0.00027 
(0.5464) (0.8541) (1.9157) (0.0534) (5.9738) (-3.0329) (2.2246) 

BK_Vega 
106.62000 1.42880 0.99444 0.00011 0.00404a -0.00113a 21.66200 

0.00028 
(0.9719) (1.3748) (1.7479) (0.0476) (6.1926) (-3.3290) (1.8717) 

BK_ELS 
-17.20200 0.17899 1.57480a 0.00013 0.00444a -0.00095a 30.37300a 

0.00037 
(-0.1527) (0.1680) (2.6790) (0.0679) (6.7386) (-2.7652) (2.5271) 

BK_VW 
194.08000 2.23780a 0.38714 0.00011 0.00399a -0.00137a 19.46000 

0.00021 
(1.6181) (1.9854) (0.6002) (0.0501) (5.8887) (-3.7798) (1.5013) 

BK_MW 
71.23500 1.34560 1.47940a 0.00012 0.00468a -0.00109a 19.54000 

0.00038 
(0.6503) (1.2904) (2.6046) (0.0552) (6.6124) (-2.9335) (1.6175) 

BK_CE
W 

81.59300 1.20610 1.11850a 0.00011 0.00424a -0.00112a 23.50000a 
0.00031 

(0.7414) (1.1567) (1.9668) (0.0482) (6.5075) (-3.2910) (2.0180) 
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Table 4: Regression Analysis for Hedging Errors - continued 
 
BK_CM
W 

83.33300 1.22430 1.11010 0.00011 0.00424a -0.00112a 23.38700a 
0.00031 

(0.7571) (1.1739) (1.9517) (0.0441) (6.5043) (-3.3002) (2.0078) 
BK_CG
W 

82.07000 1.21730 1.11830a 0.00011 0.00425a -0.00112a 23.46100a 
0.00031 

(0.7465) (1.1685) (1.9706) (0.0500) (6.5311) (-3.3029) (2.0165) 

BK_VIX 
223.78000 2.58760a 0.83334 0.00010 0.00334a -0.00132a 21.08200 

0.0002 
(1.9151) (2.3430) (1.6534) (0.0387) (4.8876) (-3.6694) (1.6705) 

BK_MF 
-10.036 2.22110 4.09190a 0.00012 0.00775a -0.00136a 17.97797 

0.00123 
(-0.0587) (1.3851) (4.7395) (0.0554) (9.7454) (-3.1062) (1.4558) 

BK_DS 
186.78 2.44040a 0.73626 0.00011 0.00470a -0.00144a 16.89000 

0.00035 
(1.6019) (2.2181) (1.2182) (0.0467) (7.0900) (-4.1336) (1.3761) 

Note: AE = |VM – VBL|, F/K = moneyness,  = time-to-maturity, r = risk-free rate, TV = trading volume, OI = open 

interest, CP = dummy variable for call and put. 
a 

denotes significance at the 5% level. 
 

Table 4 shows that: (1) the risk-free rate cannot explain the hedging performance. (2) The 
moneyness and the time-to-maturity have a significant positive correlation to the absolute value of 
hedging errors. However, this result cannot be proved to be true in general because the moneyness and 
the time-to-maturity do not have a significant correlation to the absolute value of hedging errors under 
equal-weighted averaging, Vega-weighted average and minimum error-weighted average volatility 
models. (3) The trading volume has a significant positive correlation to the absolute value of the 
hedging error. (4) The open interest has a significant negative correlation to the absolute value of the 
hedging errors. (5) The call option is significantly correlated to the absolute value of the hedging errors 
in five models. Overall, the results above indicate that call options, ITM, longer time-to-maturity, 
larger trading volume and smaller open interest result in a worse hedging performance. 
 
 
5.  Conclusions 
Using the TAIEX options, this study compares the option pricing and hedging performances of 
different volatility models applied to the Black model. The main characteristic of this study is the 
incorporation of composite volatility models, including: the equal-weighted average model, the 
minimum error-weighted average model and the geometric average volatility model. This study also 
applies dynamic selection model that selects the best volatility model each day to carry out forecasting 
for the next day. On the whole, in regard to pricing, the model-free model has the best performance, 
and the composite volatility models come in second. The dynamic selection model does not have 
outstanding performance. In regard to hedging, the composite volatility models have the best 
performance, followed by the model-free model and the dynamic selection model has the worst 
performance. The Black option model is used widely in practice, and the estimated volatility affects 
pricing and hedging performances. The design of this research is to make a contribution to the 
academic field as well as a reference for the industry. 
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