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Abstract 
 

This paper demonstrates how CVaR methodology can be applied to optimal 
portfolio problem and analyses the decision rules for consumption and asset allocation in 
the optimal portfolio. CVaR is able to quantify dangers beyond VaR and moreover it has 
superior properties in many respects. This provides a good way to control market risk in the 
continuous time portfolio selection. The problem is formulated as a constrained 
maximization of expected utility based on the power utility function. We used the analysis 
methods presented in K.F.C. Yiu (2004). The dynamic programming technique is applied to 
derive the HJB equation, the method of Lagrange-Kuhn-Tucker is used to tackle the 
constraint and numerical method is proposed to solve the HJB equation and the optimal 
constrained portfolio allocation. In this paper, we also compare the optimal portfolio 
depended on CVaR risk constraint which derived for three asset loss distributions. We find 
that investments in risky asset are even reduced under the imposed CVaR constraint which 
was measured by non-normally distributed assumption. 
 
 
Keywords: Optimal portfolio; Value-at-risk; Conditional Value-at-Risk; Dynamic 
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1.  Introduction 
The fundamental concept behind optimal portfolio problem is how much wealth to allocate to current 
consumption and how much to save/invest for future consumption. The decision to allocate savings 
among the available investment opportunities is called portfolio selection. The basic portfolio selection 
problem was introduced by Markowitz (1952) in a static framework, taking the individual’s 
consumption decision as given. Markowitz developed mean-variance analysis in the context of 
selecting a portfolio of common stocks which makes a one-off decision at the beginning of the period 
and holds on until the end of the period. Gradually, researchers have continued to extend the single-
period model to continuous-time models. In the pioneering work of Merton (1971), the portfolio 
problem was reduced to a control problem which can be solved by applying results from stochastic 
dynamic programming. Explicit solutions for a particular class of utility functions have been obtained. 
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In the financial economic, VaR is a very popular used concept for quantifying the downside 
risk of portfolio. For a discussion of VaR as a risk measure see, for instance, Elton, Gruber, Brown, 
and Goetzmann (2003) or Jorion (1996). Klüppelberg and Korn (1998) and Alexander and Baptista 
(1999) conduct a Mean-VaR analysis using VAR to manage the risk of portfolios and compare the 
result to mean-variance approach. However, these studies are static framework. Luciano (1998), Basak 
and Shapiro (2001) and K.F.C. Yiu (2004) focus on optimal portfolio choice of a utility-maximizing 
agent and use the VaR as a constraint. In particular, Luciano (1998) have compared the deviations from 
static VaR measures to the dynamic ones rather than applying VaR constraint to optimal portfolio 
problem. Basak and Shapiro (2001) is the first attempt to directly embed risk management objectives 
into a utility-maximizing framework which focus on imposing the VaR constraint at one point in time 
to study trading between recalculated VaRs. K.F.C. Yiu (2004) looks at the continuous time optimal 
portfolio problem when a VaR constraint is imposed. The dynamic programming technique is applied 
and the method of Lagrange multiplier is used to solve the constrained portfolio allocation. 

Unfortunately, VaR is not a coherent risk measure as discussed by Artzner et al. (1997, 1999). 
It has undesirable mathematical characteristics such as a lack of subadditivity and convexity. For 
example, VaR associated with a combination of two portfolios can be greater than the sum of the risks 
of the individual portfolios. Motivated by this shortcoming, Rockafellar and Uryasev (2000) introduced 
the CVaR risk measure for continuous distribution functions, a simple description of the convex 
optimization problems with CVaR constraints can be found in the paper. Recently, Pflug(2000) proved 
that CVaR is a coherent risk measure, see also Acerbi (2001), Acerbi and Tasche (2001). CVaR has 
many attractive properties including transition-equivariant, positively homogeneous, convex with 
respect to portfolio positions, monotonic with restrict to stochastic dominance. See Ogryczak and 
Ruszczynski (2002) for an overview of CVaR. In addition, minimizing CVaR typically leads to a 
portfolio with a small VaR. In this paper, we extend the VaR minimization approach, developed in 
K.F.C. Yiu (2004), to optimal portfolio problems with CVaR constraint. In the literature, researchers 
have been aware that the risk of extreme, rare events, such as the Black Monday 1987, cannot always 
be accurately described by the normally-distributed random variable. We show that this approach is 
also possible to extend to risk constraint which derived for different asset loss distributions. In this 
paper, we provide a constrained portfolio choice problem with the CVaR constraint and discuss the 
portfolio choice implications. 

The rest of this article proceeds as follows. First, we introduce the risk measure of CVaR and 
derive it from different asset loss distribution assumption. Then, the optimal portfolio problem is 
formulated as a constrained maximization of the expected power function utility, with the constraint 
being the CVaR which is derived to model market risk for n risky assets plus a risk-free asset. 
Dynamic programming is applied to solving the Hamilton–Jacobi–Bellman equation (HJB-equation) 
coupled with the CVaR constraint, and the method of Lagrange-Kuhn-Tucker is then applied to handle 
the constraint. Then, a numerical method is proposed to solve the HJB-equation and hence the 
constrained optimal portfolios. Finally, the result with CVaR constraint is compared. 
 
 
2.  Conditional Value-at-Risk 
In the financial industry, VaR is a very popular measure of risk for quantifying the downside risk of 
portfolio. The definition of VaR is the maximum expected loss in a specified horizon period at a given 
confidence level. In addition, CVaR is the loss one expects to suffer at that confidence level by holding 
it over the investment period, given that the loss is equal to or larger than its VaR. This risk measure 
does account for the loss size concerning events when the loss exceeds VaR. It has been shown to 
satisfy the requirements of the coherent risk measures and is consistent with the second degree 
stochastic dominance. 

Assume that portfolio’s rates of return have a multivariate normal distribution is a popular 
assumption in the literature. Let Φ(•) be the standard normal cumulative distribution function and φ (•) 
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the standard normal probability density function. Define E(rω) as the portfolio ω’s random rate of 
return, and let σ(rω), f(•) and F(•) denote, respectively, its expected rate of return, standard deviation, 
probability density function and the cumulative distribution function of . Given an investment period 
and a confidence level ζ (e.g., ζ = 0.99), using the definition of VaR, we have that 

1( , ) ( ) ( ) ( )rVaR r F E r z r
ωω ω ζ ωζ ζ σ−= − = − − 1. (1) 

Similarly, it follows from the definition of CVaR that 
( , ) { | ( , )} ( ) ( )CVaR r E r r VaR r E r k rω ω ω ω ω ζ ωζ ζ σ= − ≤ − = − − , (2) 

where 

( )

1

z
x x dx

k
ζ

ζ

φ

ζ
−∞=

−
∫

.
 (3) 

Equation (2) implies that kζ > zζ  at the given confidence level ζ, thus we have CVaR(rω,ζ) > 
VaR(rω,ζ). From equation (1) and (2), CVaR evaluates the risk of an investment in a conservative way. 

In actually, calculation of VaR or CVaR based on the normal probability measure may 
underestimate the exposed risk. Therefore, we also consider the t-distribution and Extreme Value 
distribution for CVaR calculation. CVaRnormal is shown as equation (2). The t-distribution2 is symmetric 
and bell-shaped, like the normal distribution, but has heavier tails which means that it is more prone to 
producing values that fall far from its mean. We can get CVaRt-distribution by directly substituting the 
probability density function and the cumulative distribution function into equation (2). The Extreme 
Value distribution is designed as a mixture distribution which take the behavior of extreme events and 
non-symmetric into account. It is made by adding a catastrophic loss event with probability p to the 
normal distribution. Let B(L,p) be the Bernoulli distribution which take value L = Φ-1(10-7) with 
success probability p = 0.3. CVaRextreme is formulated as 

( )
( , ) ( ) ( )

1

z

extreme

x x dx
CVaR r E r pL r

ζ

ω ω ω

φ
ζ σ

ζ
−∞

⎡ ⎤⋅
⎢ ⎥= − − +
⎢ ⎥−
⎣ ⎦

∫

.

 (4) 

 
 
3.  Continuous-Time Optimal Portfolios 
The optimal problem, based on the framework by Merton, is formulated as maximizing the total 
expected utility by allocating personal wealth among current consumption, investment in a riskless 
asset, and investment in n risky assets. Assume at time t = 0, the agent is endowed with initial wealth 
X0 and, in the financial market, the agent can invest money in a risk-free asset B at the deterministic 
short rate of interest r. The change in riskless asset can be written as 

( ) ( )dB t rB t dt= . (5) 
Alternatively, the agent can also invest in n risky assets with the price process as (S1(t),…,Sn(t)), 

where the vector process S(t) follow the standard Wiener process 
( ) ( ( )) ( ( )) ( )dS t D S t dt D S t dW tμ σ= + . (6) 

W(t) is a k-dimensional standard Wiener process, μ is an n-vector, σ is an n×k matrix, and 
D(S(t)) is the diagonal matrix diag[S1(t),…,Sn(t)]. Let ω(t), an n-vector, be the amount of wealth 
                                                 
1  1(1 )zζ ζ−= Φ −  

2  The probability density function of t-distribution is
( 1)2

2

1( )
2( ) (1 )

( )
2

v
v

xf x v vvπ

+
−

+
Γ

= ⋅ +
⋅Γ
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invested in S(t) and define e to be the n-vector of 1, then the budget-constraint dynamic in a portfolio 
consisting of B(t) and S(t) with consumption c(t) is therefore 

-1( ) - ( )( ) ( ) ( ( )) ( ) - ( )t
t

X t tdX t dB t D S t dS t c t dt
B
ω ω

′
′= + ×

e

 
        ( ( ) - ( ) ) ( ) ( ( )) - ( )X t t rdt t dt dW t c t dtω ω μ σ′ ′= + +e  

( )        ( ) ( - ) ( ) - ( ) ( ) ( )t r rX t c t dt t dW tω μ ω σ′ ′= + +e . (7) 
The deterministic portion is composed of the return on the funds in the sure asset, plus the 

expected return on the funds in the risky asset, less consumption. We specified that the utility function 
is a power function of the form 

( ( , ), ) ( , )tU c x t t e c x tδ γ−=  (8) 
where δ > 0 and 0 < γ < 1. The economic reasoning behind this is that we now have an infinite 
marginal utility at c = 0. This will force the optimal consumption plan be positive throughout the 
planning period. Consider the unconstrained optimal portfolio problem where agent needs continuous 
consumption over the given period of time. Then, the objective system is maximization of the expected 
utility stream 

0( ), ( )
( , )

T t
t c t

Max E e c x t dtδ γ
ω

−⎡ ⎤
⎢ ⎥⎣ ⎦∫

,
 (9) 

subject to 
( )( ) ( ) ( ) ( ) ( ) ( ) ( )dX t t re rX t c t dt t dW tω μ ω σ′ ′= − + − + . (10) 

Merton (1971) has derived the analytical solution for utility function of this form. 
 
 
4.  Dynamic CVaR Constraint 
In this section, the continuous-time model presented in section 3 can be extended to a constrained 
portfolio choice problem with CVaR constraint. Similarly, using the analysis method in K.F.C Yiu 
(2004), we can derive the CVaR constraint in continuous time. First, the budget constraint dynamic is 
rewritten as 

( ) ( ( ) - ( )) ( ) ( )α θ ω σ′= +dX t t X t dt t dW t , (11) 

where rα = −  and 
( ) ( ) ( )( ) t re c tt

r
ω μθ

′ − −
=

− . Let ( )t s tΔ = −  be the time horizon period, then, 

integrating both side of equation (11) and rearranging the mathematical results, we have 
( ) ( )( ) ( ( ) ( )) ( ) ( ) ( )

ss t s
t

X s e X t t t e t dWα α τθ θ ω σ τ− − − − ′= − + + ∫ .
 (12) 

Process such as equation (12) is called Ornstein–Uhlenbeck process except that the speed-of-
adjustment parameter α is negative instead. Define the loss by ( )( ) ( ) ( )−Δ = − r s tX t X s e X t  to eliminate 
X(t) from equation (12). Using the conditional mean and conditional variance3 of the process on time t, 
the CVaR constraint by its definition of equation (2) is given by 

1
2

1

( )( ( ) ( ) ) ( ) ( )
( ) 2

r txr t
t

f x eCVaR t t e dx t t
F x r

ζ

ζ
θ θ ω ω−

Δ
Δ

−∞ −

⎞⎛
′= − − − × Σ⎟⎜⎜ ⎟

⎝ ⎠
∫  (13) 

                                                 
3  The conditional mean and conditional variance of X(s) is given by ( )[ ( )] ( ) ( ( ) ( ))s t

tE X s t e X t tαθ θ− −= + −  and 

2 ( )( ) ( )[ ( )] (1 )
2

s t
t

t tV X s e αω ω
α

− −′Σ
= − ,where σσ ′Σ = . 
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Substituting ( )tθ  into equation (13), the constraint of restricting the CVaR at level R is 
presented as 

1 2( ) ( ) ( ) ( )a t t a t bc t Rω ω ω′Σ + + ≤ , (14) 
where the coefficients in equation (14) is 

1
2

1
1

( )
( ) 2

r tx f x ea dx
F x r

ζ

ζ

−
Δ

−∞ −

⎞⎛
= − ×⎟⎜⎜ ⎟
⎝ ⎠
∫

,
2 ( 1)r trea e

r
μ Δ−

= − −
,

1 ( 1)r tb e
r

Δ= −
 (15) 

Equation (15), in fact, imposes an upper bound on ( )tω  to constrain the investment in the risky 
asset. The final optimal portfolio problem with CVaR constraint is given by 

0( ), ( )
( , )

T t
t c t

Max E e c x t dtδ γ
ω

−⎡ ⎤
⎢ ⎥⎣ ⎦∫

,
 (16) 

subject to 

1 2

( ) ( ( ) ( ) ( ) ( )) ( ) ( )

( ) ( ) ( ) ( )

dX t t re rX t c t dt t dW t

a t t a t bc t R

ω μ ω σ

ω ω ω

′ ′= − + − +

′ ′Σ + + ≤ .
 (17) 

 
 
5.  Optimality Conditions and Numerical Methods 
In this section, we present the general solution method for the optimal portfolio problem. The dynamic 
programming methodology developed by Bellman is applied. The optimal portfolio problem is shown 
to be equivalent to the problem of finding a solution to the HJB-equation (Bjork, 1998; K.F.C. Yiu, 
2004). To derive the optimality equations, we restate equation (15) in a dynamic programming form so 
that the Bellman principle of optimality can by applied. To do this, define 

( ), ( )
( , ) ( ( ), )

T
tt c t

J x t Sup E U c t t dt
ω

⎡ ⎤= ⎢ ⎥⎣ ⎦∫
,
 (18) 

where x is a possible state of X(t). Denote 
( , ( , ), ( , )) ( , )( ) ( , )G x x t c x t x t re rx c x tω ω μ≡ − + −  

and 
( ( , )) ( , ) ( , )H x t x t x tω ω ω′≡ Σ , 

the corresponding HJB-equation is given by 

( , ), ( , )

2

2

( ( , ), ) ( , ( , ), ( , ))

1    ( ( , )) 0
2

x t c x t

J JSup U c x t t G x x t c x t
t x

JH w x t
x

ω
ω∂ ∂⎛+ +⎜∂ ∂⎝

⎞∂
+ =⎟⎟∂ ⎠ . (19) 

To complete the solution, the boundary conditions need to be applied as 
(0, ) 0, ( , ) 0J t J x T= = . (20) 

The static optimization problem to be solve by the Lagrange-Kuhn-Tucker methods for 
constrained optimization is 

2

2( , ), ( , )

1( ( , ), ) ( , ( , ), ( , )) ( ( , ))
2x t c x t

J Jmax U c x t t G x x t c x t H x t
x xω

ω ω
⎞⎛ ∂ ∂

+ + ⎟⎜⎜ ⎟∂ ∂⎝ ⎠
 (21) 

subject to the constraint 

1 2( ( )) ( , ) ( , )ω ω′+ + ≤a H t a x t bc x t R . (22) 
To provide a solution, denote the Lagrange function as 
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( )

2

2

1 2

( ( , ), ( , ), ( , ))

1( ( , ), ) ( , ( , )), ( , )) ( ( , ))
2

( , ) ( ( , )) ( ) ( ) ,

x t c x t x t

J JU c x t t G x x t c x t H x t
x x

x t R a H x t a t bc t

ω λ

ω ω

λ ω ω

ℑ =

∂ ∂
+ +
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′− − + +

       

       

 (23) 

where λ(x,t) ≤ 0 is the multiplier. Then using the extreme points from the first-order necessary 
conditions4 of the static optimization problem, we can get ωopt(x,t), copt(x,t) and λopt(x,t). When equation 
(19) is evaluated at the optimum t ωopt(x,t), copt(x,t) and λopt(x,t)., the optimization problem is simplified 
as 

2

2
1( ( , ), ) ( , ( , ), ( , )) ( ( , )) 0
2

ω ω∂ ∂ ∂
+ + + =

∂ ∂ ∂
opt opt opt opt

J J JU c x t t G x x t c x t H x t
t x x

.

 (24) 

It becomes an ordinary differential equation which can be solved for the optimal value fuction 
Jopt(x,t). The first-order conditions together with numerical methods are required to solve forωopt(x,t), 
copt(x,t), λopt(x,t) and Jopt(x,t) iteratively. 

Merton (1971) has derived the analytical solution for the value function J(x,t) for utility 
function of this form. He suggest a trial value function of the form 

( , ) ( )tJ x t e h t xδ γ−= , (25) 
which separates the x and t variables.5 Substituting the trial function into the HJB equation, it reduces 
to a Bernoulli equation for h(t) which is an ordinary differential equation. Substituting the utility 
function into the equation (24), the HJB equation is given by 

( )
2

2 2
2

( , ) ( , )( ) ( , )

1     ( , ) 0
2

t
opt optopt

opt

J Je c x t x t r rx c x t
t x

Jx t
x

γδ ω μ

ω σ

−∂ ∂
+ + − + −

∂ ∂

∂
+ =

∂ .

 (26) 

(26) Finally, substitute for the derivative in equation (26), dividing by e-δt xγ the problem is 
transformed into 

( , ) ( ( , ), ) ( , ) ( ( , ), ( , )) 0t opt opth x t A x t x h x t B c x t h x tγω+ + =
,
 (27) 

with the terminal condition 
( , ) 0h x T = , (28) 

where 

                                                 

4  The first-order condition are given by 
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∂ ∂ ∂
∂ℑ ∂ ∂
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∂ ∂ ∂
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∂
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J J x tre x t x t a a
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U J x t b
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5  The derivative of x, x2 and t is given by 1( )t
xJ e h t xδ γγ − −= , 2( 1) ( )t

xxJ e h t xδ γγ γ − −= −  and 

( ) ( )t t
t tJ e h t x e h t xδ γ δ γδ− −= − . 
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2 2

2
( , )( ) ( , ) ( 1)1( ( , ), )

2

( , ) ( ) ( , )
( ( , ), ( , ))

opt opt
opt

opt opt
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x t r x t
A x t x r

x x

c x t h t c x t
B c x t h x t

xx

γ
γ

γ

ω μ ω σ γ γ
ω γ δ

γ

− −⎞⎛
= + + −⎟⎜

⎝ ⎠

= −
.

 (29) 

To avoid the singularity in calculating negative powers of h(x,t) near to the terminal time T, 
equation (26) is transformed into6 

( , ) (1 ) ( ( , ), ) ( , ) (1 ) ( ( , ), ( , )) ( , ) 0γβ ω β+ − + − =t opt optg x t A x t x g x t B c x t g x t g x t  (30) 
where 

( , ) 0g x T =  (31) 
To evaluate these expressions numerically we use an iterative algorithm procedure to find an 

optimal solution. We take an initial guess, the unconstrained solution 2
( )

(1 )
fr

x
μ

ω
σ γ

−
=

− , to solve for the 

optimal portfolio problem. Dividing the computational domain into a grid of Nx×Nt.We repeat the 
following procedure until convergence: 

Step 1. Set k=0. (0) 0optλ = ,
(0)

2
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x
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σ γ

−
=

− , ( ) 1 1(0) (0)( )optc x h t
γ− −

= and calculate the 

derivative of x, (0)
xJ , and the derivative of x2, 

(0)
xxJ . Then solve the unconstrained 

solution (0) (0)
01( ) ~ ( )

tNg t g t− . 

Step 2. For [0, ,..., ]xx x N x= Δ Δ and [( 1) ,..., ,0]tt N t t= − Δ Δ , calculate 
(1)
optλ  and 

(1)
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first-order condition of the Lagrange function 
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1 2( 1)

2 (0)

1( 1) ( 1)1 (0)
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+
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− + − =

− − − +
=

= + =

 (32) 

Step 3. For [0, ,..., ]xx x N x= Δ Δ and 1,...,0tn N= − , solve 

( )

( 1) ( 1) ( 1)( 1)
1 1

( 1) ( ) ( )

( ) ( ) (1 ) ( , ) ( )

                                (1 ) ( , ( ) ) ( )

k k kk
n optn n

k k k
n nopt

g t g t t A x g t

t B c g t g t
γ

β ω

β

+ + ++
+ +

+

= + Δ −

+ Δ −
,

 (33) 

with the boundary condition,
( 1) ( 1)

1( ) ( ) 0k k
Tng t g t+ +

+ = =  
Step 4. Return to Step 2 with k=k+1 until convergence requirement is fulfilled. 

 
 

                                                 
6  1( ) ( )  

1
g t h t β γβ

γ
−= = −

−
,   
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6.  Numerical Results and Conclusion 
The optimal portfolio choice and consumption rule given in equation (16) and (17) is done using a 
Matlab program. The terminal year is chosen to be 20 and Nt is fixed at 1000. Thus, the corresponding 
horizon period is Δt =1/50. The wealth has the range between 0 to 1000, where Δx = 2 and Nx = 500. 
We consider investors with coefficients of relative risk aversion, γ, equal to 0.3 or 0.5 and a 
comparison of the coefficients of dynamic process is given, see Table 1. The motivation for these 
economic parameters comes from the common financial advice that agent with slightly risk aversion 
will place more percentage wealth to risky asset. Also, if the expected growth rate of wealth level is 
larger and the uncertainty of wealth is less, they will invest more money in the risky asset. 
 
Table 1: Parameter assumptions in continuous-time model 
 

Parameter Asset dynamic process Utility function 
Case A μ = 0.2, σ = 0.5, r = 0.1 δ = 0.2, γ = 0.5 
Case B μ = 0.12, σ = 0.2, r = 0.05 δ = 0.1, γ = 0.3 
Case C μ = 0.12, σ = 0.2, r = 0.05 δ = 0.1, γ = 0.5 

 
Figure 1 through Figure 3 plot the result of comparative exercises that the optimal portfolio rule 

has been solved with CVaR constraint (The detail numerical results of consumption, investment in 
risky asset and object value function are showed in Table 2 to Table 4). From the figure, we can 
observe that well control has been achieved and the allocation to the risky asset have been reduced in 
order to fulfil the dynamic CVaR constraint. In addition, when the constraint is not active, Lagrange 
 

Figure 1: Optimal portfolio based on Normal-distributed CVaR constraint 
 

 
 

 
In this case, the parameters are μ = 0.2, σ = 0.5, r = 0.1, δ = 0.2, γ = 0.5, the horizon period is Δt =1/50, the maximum loss 
(CVaR) allowed is R=100 with probability ζ=0.01. 
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Figure 2: Optimal portfolio based on T-distributed CVaR constraint 
 

 
 

 
In this case, the parameters are μ = 0.12, σ = 0.2, r = 0.05, δ = 0.1, γ = 0.3, the horizon period is Δt =1/50, the maximum 
loss (CVaR) allowed is R=100 with probability ζ=0.01. 
 

Figure 3: Optimal portfolio based on Extreme-Value-distributed CVaR constraint 
 

 
 

 
In this case, the parameters are μ = 0.12, σ = 0.2, r = 0.05, δ = 0.2, γ = 0.5, the horizon period is Δt =1/50, the maximum 
loss (CVaR) allowed is R=100 with probability ζ=0.01. 
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Table 2: Consumption pattern (Ct) for different portfolio value at time t = 0.2 and t = 19.8 
 

CVaR 
Constraint 
Based on 

Portfolio value X0 

100 200 300 400 500 600 700 800 900 1000 

t = 0.2 Case A： μ = 0.2, σ = 0.5, r = 0.1; δ = 0.2, γ = 0.5 
Unconstrained 26.15 52.30 78.46 104.61 130.76 156.91 183.06 209.22 235.37 261.52 
Normal 26.15 52.30 78.46 104.61 130.76 156.91 182.76 208.33 233.91 259.48 
T-distribution 26.15 52.30 78.31 104.27 130.23 156.19 182.15 208.11 234.07 260.03 
Extreme Value 26.15 52.30 78.46 104.61 130.44 156.24 182.03 207.82 233.62 259.41 
 Case B： μ = 0.12, σ = 0.2, r = 0.05; δ = 0.1, γ = 0.3 
Unconstrained 10.36 20.72 31.08 41.44 51.79 62.15 72.51 82.87 93.23 103.59 
Normal 10.36 20.72 31.08 41.44 51.79 61.97 72.05 82.13 92.21 102.29 
T-distribution 10.36 20.70 30.96 41.23 51.49 61.76 72.02 82.29 92.55 102.82 
Extreme Value 10.36 20.72 31.08 41.32 51.51 61.69 71.88 82.06 92.24 102.43 
 Case C： μ = 0.12, σ = 0.2, r = 0.05; δ = 0.1, γ = 0.5 
Unconstrained 6.55 13.10 19.65 26.20 32.75 39.30 45.85 52.40 58.95 65.50 
Normal 6.55 13.10 19.65 26.16 32.46 38.77 45.07 51.38 57.68 63.99 
T-distribution 6.55 13.04 19.51 25.97 32.44 38.91 45.37 51.84 58.31 64.77 
Extreme Value 6.55 13.10 19.56 25.95 32.35 38.74 45.14 51.54 57.93 64.33 
t = 19.8 Case A： μ = 0.2, σ = 0.5, r = 0.1; δ = 0.2, γ = 0.5 
Unconstrained 513.11 1026.23 1539.34 2052.45 2565.56 3078.68 3591.79 4104.90 4618.01 5131.13
Normal 513.11 1026.23 1539.34 2051.86 2546.76 3041.79 3536.89 4032.04 4527.21 5022.41
T-distribution 513.11 1025.49 1534.03 2042.57 2551.12 3059.67 3568.22 4076.77 4585.32 5093.87
Extreme Value 513.11 1026.23 1538.73 2042.03 2545.37 3048.74 3552.11 4055.50 4558.88 5062.27
 Case B： μ = 0.12, σ = 0.2, r = 0.05; δ = 0.1, γ = 0.3 
Unconstrained 504.21 1008.42 1512.62 2016.83 2521.04 3025.25 3529.46 4033.67 4537.87 5042.08
Normal 504.21 1008.42 1512.62 2006.44 2490.17 2974.04 3457.99 3941.99 4426.02 4910.08
T-distribution 504.21 1005.92 1504.73 2003.55 2502.37 3001.20 3500.02 3998.85 4497.68 4996.51
Extreme Value 504.21 1008.42 1507.21 2000.13 2493.10 2986.09 3479.09 3972.10 4465.11 4958.13
 Case C： μ = 0.12, σ = 0.2, r = 0.05; δ = 0.1, γ = 0.5 
Unconstrained 501.38 1002.75 1504.13 2005.51 2506.88 3008.26 3509.63 4011.01 4512.39 5013.76
Normal 501.38 1002.75 1498.50 1974.28 2450.31 2926.47 3402.69 3878.95 4355.25 4831.56
T-distribution 501.38 996.65 1490.87 1985.10 2479.33 2973.56 3467.80 3962.03 4456.27 4950.51
Extreme Value 501.38 1001.96 1488.77 1975.67 2462.62 2949.59 3436.56 3923.55 4410.54 4897.53

 
Multiplier is zero, the optimal portfolio follows the unconstrained solution. The negative 

Lagrangian multiplier, λ, indicate that the CVaR constraint has bound and the absolute size of the 
multiplier indicates how important it is associated. In the figure, kinks are produced whenever the 
CVaR constraint becomes active, this will make less allocation to the risky asset. On these figures, it 
produces very similar consumption patterns for each CVaR optimization. But, consumption has been 
affected but not greatly by the risk control. The reduction in the optimal object value function, Jopt(x,0) 
is observed by imposing the CVaR constraint in these examples. 

Table 2 to Table 4 summarizes the numerical results of the optimal consumption plan, 
investment rule and objective value function for all possible sceneries in the optimal portfolio model. 
Panel “Case A” of each table reports the optimal portfolio rule for a more conservative agent when 
financial market is more volatile. In contrast, Panel “Case B” of each table reports the result of a 
slightly risk averse agent subject to less uncertainty financial environment. Panel “Case C” of each 
table reports the result which designed for compared purpose. In Table 2, we summarize the estimating 
consumption path along x at time t = 0.2 and t = 19.8. Each Panel reveals the similar optimal 
consumption rule for the unconstrained and constrained CVaR results. For all parameter settings, the 
consumption rule has been affected but not greatly by the risk control. In Table 3, we explore the 
implication for portfolio choice of the risky asset at two different times. It shows that the optimal 
portfolio follows the unconstrained solution when the exposed risk has not yet exceeded the toleration 
level, R. By contrast, the proportions invested in the risky asset have been reduced in order to satisfy 
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the risk management requirement. Because of the constant risk toleration level, the CVaR constraint 
becomes active, the allocation to the risky asset has decreased as the portfolio value x increases. 
 
Table 3: Investment in risky asset (ωt) for different portfolio value at time t = 0.2 and t = 19.8 
 

CVaR 
Constraint 
Based on 

Portfolio value X0 

100 200 300 400 500 600 700 800 900 1000 

t = 0.2 Case A： μ = 0.2, σ = 0.5, r = 0.1; δ = 0.2, γ = 0.5 
Unconstrained 80.00 160.00 240.00 320.00 400.00 480.00 560.00 640.00 720.00 800.00 
Normal 80.00 160.00 240.00 320.00 400.00 480.00 516.17 513.43 510.69 507.94 
T-distribution 80.00 160.00 178.66 177.72 176.77 175.83 174.89 173.94 173.00 172.06 
Extreme Value 80.00 160.00 240.00 320.00 327.85 326.11 324.37 322.64 320.90 319.16 
 Case B： μ = 0.12, σ = 0.2, r = 0.05; δ = 0.1, γ = 0.3 
Unconstrained 250.00 500.00 750.00 1000.00 1250.00 1500.00 1750.00 2000.00 2250.00 2500.00
Normal 250.00 500.00 750.00 1000.00 1250.00 1334.22 1331.50 1328.77 1326.05 1323.32
T-distribution 250.00 453.34 452.41 451.47 450.54 449.60 448.67 447.73 446.80 445.86 
Extreme Value 250.00 500.00 750.00 839.31 837.58 835.86 834.13 832.41 830.68 828.96 
 Case C： μ = 0.12, σ = 0.2, r = 0.05; δ = 0.1, γ = 0.5 
Unconstrained 350.00 700.00 1050.00 1400.00 1750.00 2100.00 2450.00 2800.00 3150.00 3500.00
Normal 350.00 700.00 1050.00 1343.90 1342.20 1340.49 1338.79 1337.09 1335.38 1333.68
T-distribution 350.00 454.04 453.45 452.86 452.27 451.68 451.10 450.51 449.92 449.33 
Extreme Value 350.00 700.00 842.99 841.91 840.83 839.74 838.66 837.58 836.50 835.41 
t = 19.8 Case A： μ = 0.2, σ = 0.5, r = 0.1; δ = 0.2, γ = 0.5 
Unconstrained 80.00 160.00 240.00 320.00 400.00 480.00 560.00 640.00 720.00 800.00 
Normal 80.00 160.00 240.00 315.69 262.60 209.51 156.40 103.29 50.18 -2.94 
T-distribution 80.00 144.24 125.76 107.28 88.80 70.32 51.85 33.37 14.89 -3.59 
Extreme Value 80.00 160.00 232.94 199.02 165.09 131.17 97.24 63.32 29.39 -4.53 
 Case B： μ = 0.12, σ = 0.2, r = 0.05; δ = 0.1, γ = 0.3 
Unconstrained 250.00 500.00 750.00 1000.00 1250.00 1500.00 1750.00 2000.00 2250.00 2500.00
Normal 250.00 500.00 750.00 808.57 677.81 547.00 416.18 285.34 154.49 23.63 
T-distribution 250.00 363.60 318.16 272.72 227.28 181.85 136.41 90.97 45.53 0.09 
Extreme Value 250.00 500.00 591.07 507.59 424.11 340.62 257.14 173.65 90.16 6.67 
 Case C： μ = 0.12, σ = 0.2, r = 0.05; δ = 0.1, γ = 0.5 
Unconstrained 350.00 700.00 1050.00 1400.00 1750.00 2100.00 2450.00 2800.00 3150.00 3500.00
Normal 350.00 700.00 945.88 817.27 688.58 559.86 431.13 302.38 173.62 44.86 
T-distribution 350.00 364.44 319.42 274.40 229.38 184.36 139.34 94.32 49.30 4.28 
Extreme Value 350.00 676.63 594.19 511.73 429.27 346.81 264.34 181.87 99.40 16.93 

 
This is particularly so when t is close to the maturity time T. In addition, the allocations to risky 

asset become negative in some results. The agent behaves conservative toward the final stage and is 
willing to short sell risky asset in exchange for risk-free asset. We also find that investments in risky 
asset are reduced under the imposed CVaR constraint measured by non-normally distributed 
assumption. In Table 4, we show the object value function, Jopt(x,0) for different portfolio value. With 
the imposed CVaR constraint, the object value function is smaller than that without the constraint. 
 
Table 4: Object value function, Jopt(x,0), for different portfolio value 
 

CVaR 
Constraint 
Based on 

Portfolio value X0 

100 200 300 400 500 600 700 800 900 1000 

 Case A： μ = 0.2, σ = 0.5, r = 0.1; δ = 0.2, γ = 0.5 
Unconstrained 19.5574 27.6584 33.8745 39.1149 43.7318 47.9058 51.7441 55.3168 58.6723 61.8461
Normal 19.5582 27.6594 33.8757 39.1163 43.7334 47.9075 51.7218 55.1565 58.3051 61.2382
T-distribution 19.5582 27.6594 33.7116 38.5500 42.7472 46.5272 50.0026 53.2409 56.2867 59.1719
Extreme Value 19.5582 27.6594 33.8757 39.1163 43.6271 47.5426 51.0726 54.3261 57.3671 60.2370
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Table 4: Object value function, Jopt(x,0), for different portfolio value - continued 
 

 Case B： μ = 0.12, σ = 0.2, r = 0.05; δ = 0.1, γ = 0.3 
Unconstrained 19.5192 24.0309 27.1392 29.5855 31.6338 33.4123 34.9937 36.4240 37.7341 38.9458
Normal 19.5236 24.0363 27.1453 29.5921 31.6406 33.3379 34.6121 35.6453 36.5365 37.3361
T-distribution 19.5236 23.9992 26.3484 27.9640 29.3133 30.5101 31.5992 32.6045 33.5413 34.4205
Extreme Value 19.5236 24.0363 27.1453 29.4456 30.9874 32.1942 33.2314 34.1650 35.0264 35.8324
 Case C： μ = 0.12, σ = 0.2, r = 0.05; δ = 0.1, γ = 0.5 
Unconstrained 39.2220 55.4683 67.9345 78.4440 87.7030 96.0739 103.7716 110.9365 117.6660 124.0308
Normal 39.2260 55.4739 67.9409 78.3797 85.1092 89.4669 92.9456 96.0641 99.0132 101.8670
T-distribution 39.2260 51.9595 57.5145 62.3511 66.9286 71.2870 75.4424 79.4122 83.2138 86.8639
Extreme Value 39.2260 55.4738 66.5307 72.0393 76.1240 79.8258 83.3675 86.8023 90.1442 93.3985

 
In summary, explicit solutions have been derived for the optimal portfolio behavior of investors 

with preferences assumed in Table 1 and for whom the CVaR constraint is binding. From the 
numerical results, the imposed of CVaR constraint don’t impact the agent’s propensity of consume 
severely. But, it will decrease the investment in risky assets. In addition, the non-normality asset loss 
distribution assumption on CVaR risk measure has more influence on asset allocation decision. 
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