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Abstract 
 

The purpose of this paper is to evaluate the forecasting performance of linear and 

non-linear (GARCH) models in terms of their in-sample and out-of-sample forecasting 

accuracy for EGX30 and Nikkei225 indices as an example of an emerging and developed 

markets respectively. 

We employ GARCH, GARCH-IN-MEAN, EGARCH, GJR-GARCH, Multivariate 

GARCH, and Nelson's EGARCH for forecasting using daily price data of the indices for 

the period of 2001 to 2019. We find that the volatility shocks on the indices returns are 

quite persistent. Furthermore, our findings show that the indices have leverage effect, and 

the impact of shocks is asymmetric, and consequently it can be stated that the impact of 

negative shocks on volatility are higher than positive shocks. 

The results suggest that the Nelson's EGARCH model is the most accurate model in 

the GARCH class for forecasting, as this model outperforms the other models. 

Additionally, we find that emerging stock markets have higher volatilities than those in 

developed markets. Further, these results imply that the EGARCH model might be more 

useful than other models when implementing risk management strategies and developing 

stock pricing model. 

This paper contributes to the literature by comparing two significant global markets; 

one of the largest developed economies in the world, Japan, and one of Africa’s largest 

developing economies, Egypt. 
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1.  Introduction 
Modelling and forecasting the volatility of stock market returns has been an important area of research 

in recent years. The reason being that investors want to understand the level of risk they will be 

exposed to as part of their decision-making process. Assets with higher volatility are viewed by 

investors as riskier because volatility can result in large variations of returns. 

Pilbeam and Langeland (2015) define volatility as the standard deviation or variance of the 

returns of an asset during a given time-period. They also state that volatility is a key parameter in the 

pricing of financial derivatives and that all modern option-pricing techniques rely heavily on volatility 

parameters for price evaluation.  

Alexander (1999) suggests that high volatility within a market may act as a deterrent to 

potential investors as they are concerned by the impact that the variability in speculative market prices 

may have on their returns. 

Engle and Patton (2007) state that volatility models used widely can be split into two general 

classes: the first class formulates the conditional variance directly as a function of observables; the 

second formulates models of volatility that are not functions purely of observables. The simplest 

examples of the first class are the autoregressive conditional heteroscedasticity (ARCH) and 

generalized autoregressive conditional heteroscedasticity (GARCH) models. Both models are widely 

used in finance.   

The aim of this paper is to evaluate the forecasting performance of linear and non-linear 

(GARCH) models in terms of their in-sample and out-of-sample forecasting accuracy for EGX30 and 

Nikkei225 indices as an example of an emerging and developed market respectively. GARCH, 

GARCH-IN-MEAN, EGARCH, GJR-GARCH, Multivariate GARCH, and Nelson's EGARCH are 

employed for forecasting, using daily price data of the indices for the period of 2001 to 2019. 

Research in the area relating to GARCH modelling of stock return volatility is extremely 

limited for emerging/developing markets (Adesina, 2013; Bekaert and Wu, 2000) and there do not 

appear to be studies examining return volatility with symmetric and asymmetric GARCH models of the 

Egyptian and Japanese stock markets, over a substantial time frame. This paper uses data from 3
rd

 

January 2001 to 31
st
 December 2019 for two popular world-wide stock exchange indices namely EGX-

30 and Nikkei 225. The EGX-30 index includes the top 30 companies in terms of liquidity and activity 

listed on the Egyptian Stock Exchange and the Nikkei 225 (Nikkei) index includes 225 Japanese 

companies listed on the Tokyo Stock Exchange (Al Rahahleh and Kao, 2018), giving a total of 3,580 

observations.  

Previous research has suggested that developing markets have higher sample average returns, 

returns that are more predictable, have higher volatility and a low correlation with developed market 

returns (Bekaert and Wu, 2000). The differences identified between developed and developing markets 

could have implications for potential investors. This paper attempts to close the gap in the literature by 

comparing volatility forecasts of one of the largest developed economies in the world, Japan, and one 

of Africa’s largest developing economies, Egypt.      

Previous research has also suggested that volatility can vary depending upon whether return 

shocks are present. Mwita and Nassiuma (2015) examine the nature and characteristics of volatility of 

Kenyan stock markets using a symmetric volatility GARCH model to estimate the volatility of stock 

returns during the time frame, 1985-2011. Their results find that there is evidence of time varying stock 

return volatility during this period. In addition, following a financial crisis, negative returns shocks 

have higher volatility than positive returns shocks. Therefore, analyzing a substantial timeframe will 

allow for the investigation of whether positive or negative shocks would influence volatility.    

The main results show that the volatility of shocks on the indices returns are quite persistent, 

the indices have leverage effect, and the impact of shocks is asymmetric. Asymmetric shocks suggest 

that the impact of negative shocks on volatility are higher than positive shocks and the shocks are of 

the same size for both EGX30 and Nikkei225 indices. The results also suggest that the Nelson's 
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EGARCH model is the most accurate model in the GARCH class for forecasting, as this model 

outperforms the other models. In addition, the results show that emerging stock markets have higher 

volatilities than those in developed markets, due to the weaker economic fundamentals often present in 

emerging markets.   

The rest of this paper is organized as follows: section 2 reviews the previous literature, section 

3 discusses the methodology, section 4 analyses the data and results and section 5 concludes the paper. 

 

 

2.  Literature Review 
ARCH (Autoregressive Conditional Heteroskedasticity) and Generalized ARCH (GARCH) models 

have become a research focus over the last few decades as they have emerged as prominent tools in 

estimating volatility (Gabriel, 2012). Mwita and Nassiuma (2015) state that volatility plays a 

substantial role in many financial decisions as the ability to accurately measure and predict stock 

market volatility has widespread implications, particularly with regards to estimated returns.  

 

2.1. ARCH vs GARCH  

Over time there have been many models that attempt to estimate stock market volatility; these include 

both ARCH and generalized ARCH (GARCH). ARCH was proposed by Engle (1982) and generalized 

ARCH proposed by Bollerslev (1986). Lim and Sek (2013) state that many extensions of the models 

have been proposed over time with the aim of improving volatility estimations, namely, GARCH-M, 

IGARCH, EGARCH (Nelson, 1991), Threshold GARCH (Glosten et al, 1993), Asymmetric GARCH 

model AGARCH (Engle, 1990) and Fractionally Integrated FIGARCH (Baillie et al, 1996).  

There has been much research with regards to which model performs better in estimating 

volatility and the results of these seem to be mixed. According to Lim and Sek (2013) some studies 

show that using a simple GARCH (p,q) model produces more preferable results and some show 

extensions of GARCH models perform better, with performance of these models varying across 

markets and time frame.  

Bollerslev (1986) results show that the GARCH model outperformed the ARCH model. 

Whereas, Baillie and Bollerslev (1991) found that the GARCH model was relatively poor when 

estimating patterns of volatility within the US foreign exchange (FOREX) market. Pilbeam and 

Langeland (2015) state that the latest study of option valuation showed that the GARCH model for the 

S&P index is more appropriate than another volatility method.  

There are various findings when it comes to analyzing the reliability of GARCH extensions 

models. Hansen and Lunde (2005) find that none of the models in the GARCH family outperforms the 

simple GARCH (1,1) which seems to be unexpected as it does not rely upon a leverage effect (Pilbeam 

and Langeland, 2015).  

Forte and Manera (2002) investigate the forecasting performance of three popular nonlinear 

GARCH models, VS-GARCH, GJR-GARCH and Q-GARCH, with the symmetric GARCH (1,1) 

model as a benchmark. They use data from ten European stock price indices. With regards to the 

standard GARCH specification, they find that the non-linear models in general lead to better forecasts 

in terms of both smaller forecast errors and lower biases.  

Hamadu and Ibiwoye (2010) show that the EGARCH model outperforms other models when 

testing in model-estimating evaluation and out-of-sample volatility forecasting suggesting that 

EGARCH is more reliable than other GARCH models for modelling stock price returns.  

There seems to be mixed findings with regards to Nelson’s EGARCH model, Pilbeam and 

Langeland (2015) state that it has several advantages over linear GARCH models, however this may be 

limited to certain studies because although Brownlees and Gallo (2010) find that while EGARCH 

frequently produces the most accurate forecast, it is sometimes outperformed by the linear GARCH 

model.  
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Donaldson and Kamstra (2005) find that the GJR-GARCH (1,1) model was a better predictor at 

forecasting international stock return volatility than GARCH(1,1) and EGARCH(1,1). Whereas, 

Balaban (2004) believe that the standard GARCH model is the most accurate at forecasting U.S. 

dollar-Deutschemark exchange rate volatility. Ng and McAleer (2004) use a simple GARCH (1,1) and 

threshold ARCH (TARCH(1,1)) models to estimate forecasting volatility of daily returns for the USA 

using the Standard and Poor (S&P) 500 Composite Index and Japan using the Nikkei 225 Index. Their 

results suggest that the TARCH (1,1) model is more accurate for the S&P 500 dataset than GARCH, 

whereas the opposite is the case for the Nikkei 225 Index.  

Pilbeam and Langeland (2015) argue that although there is a rich body of literature on volatility 

forecasting, the question as to which model is optimal is still yet to be answered.    

 

2.2. Intra-day Data in GARCH Models 

Abounoori and Zabol (2020) state that conventional GARCH models generally use only daily stock 

returns to calculate variances which leads to the information set of conventional GARCH models being 

limited. They suggest that ‘information obtained from daily returns is lower than the different criteria 

derived from intraday data’ (p.300). Andersen et al (2003) also suggests that GARCH models can be 

slow to react to volatility changes as the models are based on moving averages with decreasing weight. 

Abounoori and Zabol (2020) state that due to these limitations there was a need to introduce intra-day 

data into the GARCH model framework. Engel (2002) suggested including a realized variance as an 

exogenous variable in GARCH models. However, Abounoori and Zabol (2020) state that there is a 

disadvantage to this as only one-day ahead conditional variance prediction is possible.  

Abounoori and Zabol (2020) use the Gold five-minute intra-day data for seven years from 2012 

to 2018, to compare the realized GARCH model with some conventional GARCH models such as 

GARCH, EGARCH, and GJR-GARCH.  

Abounoori and Zabol (2020) suggest that a good model not only should fit data well but also it 

should have accurate performance in predicting out-of-sample volatility. Therefore, in their paper they 

compare the models in two ways, by firstly considering how well data has been fitted to the models 

and, secondly, the accuracy of the prediction of the conditional variance of the sample. They do this by 

using ‘the rolling window approach and using a loss function to select the most accurate model’ 

(p.300). Their results show that the RGARCH method for GOLD outperforms the other methods in 

terms of data fit and accuracy. Kayahan et al (2002) tend to support this conclusion as their assessment 

of the relative performance of realised volatility (RV) using intra-day returns from an emerging market 

is considered to be a more successful estimate than that of a conventional GARCH model. 

Therefore, Abounoori and Zabol (2020) conclude that the using RGARCH models instead of 

conventional GARCH models provide a more accurate estimation for the conditional variance as a 

proxy of volatility. Which they believe is a key factor in risk management and portfolio management.  

 

2.3. Developed vs Emerging Markets 

Adesina (2013) suggests that the study on GARCH modelling is more heavily focused on developed 

markets than emerging markets. Cheteni (2016) is one of the few papers to analyse the relationship 

between stock returns and volatility of stock markets within a developed country, South Africa, and a 

developing country, China. They use a GARCH model to estimate volatility of the stock returns from 

the Johannesburg Stock Exchange FTSE/JSE Albi index and the Shanghai Stock Exchange Composite 

Index. They use data from 1998 to 2014 and their empirical results show that both markets exhibit high 

volatility and display similar features in terms of volatility clustering. Cheteni (2016) suggest that the 

most plausible explanation for this similarity may be that there is more trading between the two 

economic systems. However, they state that the paper did not try to identify all the possible causes for 

the unexpected similarity in clustering between the two stock exchanges because the model used is 
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unable to fully capture the aspects of leverage and asymmetry in the stock returns. They suggest that a 

model measuring those two aspects may contribute a better understanding between the two stock 

markets (Cheteni, 2016). 

Abdalla and Winker (2012) estimate the volatility of two African stock exchanges, the Cairo 

and Alexandria Stock Exchange (CASE), in Egypt, and Khartoum Stock Exchange (KSE), in Sudan. 

They examine the period from 2006 to 2010 using symmetric and asymmetric GARCH models and 

their results show that volatility ‘is an explosive process for the KSE index returns series, while it is 

quite persistent for the CASE index returns series’ (p.10). In addition, the asymmetric GARCH models 

find evidence of asymmetry in stock returns within the two markets, which confirms the presence of 

leverage effect within the return series.  

Lee et al (2017) examine a mixture of developed and developing markets by using index return 

series for Malaysia (FTSE KLCI), Indonesia (JKSE), Hong Kong (Hang Seng), and Japan (Nikkei) to 

investigate the robustness of three volatility forecasting models: Exponential Weighted Moving 

Average (EWMA), Autoregressive Integrated Moving Average (ARIMA) and Generalized Auto-

Regressive Conditional Heteroscedastic (GARCH).  

The results suggest that none of the chosen forecasting models appears be robust for all four 

stock markets. However, they find the GARCH (1, 1) model to be the best forecasting model for stock 

markets in Malaysia, Indonesia, and Japan, while EWMA model is found to be the best forecasting 

model for Hong Kong stock market. Furthermore, their results indicate that the Hong Kong stock 

market exhibits higher volatility than the Malaysian market which could suggest that developed stock 

markets can have higher volatilities than those in developing markets. These results are somewhat 

supported by Cheteni (2016) who find that both the South African and Chinese stock markets exhibit 

high volatility. Overall, Lee et al (2017) state that GARCH (1, 1) appears to be the better forecasting 

model for the majority of the markets in the sample, but as the sample is limited to just two developed 

and two developing markets which are all based in Asia, they suggest that further studies examining 

different markets could display very different results. 

Abdelhafez (2018) focus their analysis on one country, Egypt, to investigate which model is 

more reliable when forecasting volatility. Different Symmetric and Asymmetric GARCH models are 

used to determine which model is most appropriate to analyze the data. The symmetric models used are 

GARCH (1, 1), GARCH (1, 2), GARCH (2, 1), GARCH (2, 2) and GARCH-IN-MEAN (1, 1) and the 

asymmetric models are TARCH (1, 1) and EGARCH (1, 1). The results show that the most appropriate 

models to analyze data from the Egyptian Stock Market are GARCH (1, 2), GARCH (2, 1), TARCH 

(1, 1) and EGARCH (1, 1). In addition, they find the best model in estimating volatility and forecasting 

in the Egyptian stock market is the TARCH (1, 1) model as well as it being the more appropriate model 

in capturing the leverage effect. 

This paper contributes to the literature by comparing two significant global markets; one of the 

largest developed economies in the world, Japan, and one of Africa’s largest developing economies, 

Egypt. Daily indices return from the Nikkei-225 and EGX-30 are used along with symmetric and 

asymmetric GARCH models. In addition, the timeframe examined is substantial, 2001 to 2019, and 

covers one of the most significant financial crises in recent years, the global financial crisis 2007-2009. 

 

 

3.  Methodology 
Six Symmetric and Asymmetric GARCH models were used to describe and forecast the volatility of 

the EGX-30 and Nikkei-225 daily indices return. 

 

3.1. Multivariate GARCH (MGARCH) Model 

MGARCH stands for multivariate GARCH. MGARCH allows the conditional-on-past-history 

covariance matrix of the dependent variables to follow a flexible dynamic structure (Pilbeam and 

Langeland, 2015). 
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3.2. Forecasting using Nelson EGARCH 

This paper attempts to model and forecast the volatility of the EGX-30 and Nikkei-225 daily indices 

return during 2001–2019, using the Nelson’s EGARCH model. The analysis covers from 3
rd

 January 

2001 to 31
st
 December 2017 and from January 2017 to 31

st
 December 2019, as in-sample and out-of-

sample sets, respectively. The results have been estimated with AIC and BIC as the measures of 

performance. It has been shown that Nelson's EGARCH for forecasting is the best-fitted model to 

capture the leverage effect (Brownlees and Gallo, 2010; Poon and Granger, 2003; Dury and Xiao, 

2018). 

 

 

4.  Data and Empirical Results 
4.1. Data 

Two countries are analysed within this paper, one developed, Japan, and one emerging, Egypt. Daily 

closing prices in USD for all stock indices from the two countries are collected from the Egyptian and 

Japan Stock markets for a period of 2001-2019, which consists of an in-the-sample period of 2001-

2017 and the forecast commences in 2018-2019. The daily data runs from 3
rd

 January 2001 to 31
st
 

December 2019, giving a total number of 3,580 observations.  

Figure 1 and Figure 2 show that daily log of returns during the time frame used and there are 

clear periods of volatility clustering. In Figure 1 and Figure 2 it can be seen that that the series are 

stationary with most of the returns being located around zero. However these show spikes in the first 

order difference in periods with high volatility. 

It is clearly observed that stock index returns of the emerging market (Egypt) exhibit higher 

patterns as compared to the other developed market (Japan) over the sample period of 2001-2019. In 

addition, a more fluctuating trend is found for the other developed stock market. Therefore, the results 

obtained confirm that volatility in emerging markets is higher than the volatility in developed markets.  

 
Figure1: Log of Daily Stock Returns for EGX30 from (2001-2019) 
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Figure 2: Log of Daily Stock Returns for Nikkei225 from (2001-2019) 

 

 
 

Figure 3 and figure 4 show the empirical distribution of returns, a histogram is used to illustrate 

the density of returns and a curve from normal distribution is overlaid. Figure 3 and figure 4 show that 

the distribution of returns remarkably differs from normality given the excess kurtosis and light left 

skewness implying some asymmetry. 

 
Figure 3: The Distribution of Daily Stock Returns for EGX30 from (2001-2019) 
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Figure 4: The Distribution of Daily Stock Returns for Nikkei225 from (2001-2019) 

 

 
 

Table 1 and Table 2 present descriptive statistics for all stock indices. Throughout the sample 

period, all stock indices of Egypt and Japan exhibit positive values during the sample period, from 

which a higher mean value of 0.04 is found for Egypt, compared to a lower mean value of 0.01 is 

found for Japan. 

As shown in Table 1 and Table 2, statistics for skewness and kurtosis, all confirm that price 

distributions for all the two stock indices are not normally distributed. The distribution of returns 

remarkably differs from normality given the excess kurtosis and light left skewness implying some 

asymmetry. Heavy tailed leptokurtic distribution implies the index has higher risk and return in the 

sample space. Leptokurtic distributions can also show a higher value at risk in the left tail due to the 

larger amount of value under the curve in the worst-case scenarios. Overall, a greater probability for 

negative returns further from the mean on the left side of the distribution leads to a higher value at risk. 

Values of the standard deviations obtained for Egypt stock market is the highest, i.e., 1.52, implying 

that this market is more volatile than the Japanese stock market. 

 
Table 1: Descriptive Statistics of the Stock Returns for EGX30 

 
Percentiles Smallest 

1% -4.499185 -11.11695   

5% -2.400029 -10.43237   

10% -1.637448 -9.271788 Obs 3580 

25% -0.7115662 -8.104535 Sum of Wgt. 3580 

50% 0.1011361 Mean 0.042608 

Largest Std.Dev. 1.525093 

75% 0.8736477 6.833863   

90% 1.703329 7.056956 Variance 2.325908 

95% 2.343112 7.314331 Skewness -0.52923 
99% 3.783681 8.676474 Kurtosis 7.296516 
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Table 2: Descriptive Statistics of the Stock Returns for Nikkei225 

 
Percentiles Smallest 

1% -4.109823 -12.111 

5% -2.341594 -10.088 

10% -1.680566 -9.84905 Obs 3580 

25% -0.6882214 -7.59736 Sum of Wgt. 3580 

50% 0.0516572 Mean 0.01315 

Largest Std.Dev. 1.48921 

75% 0.7846138 7.42617 

90% 1.641034 7.455602 Variance 2.21776 

95% 2.169084 9.494146 Skewness -0.2101 

99% 3.765568 13.23458 Kurtosis 9.61806 

 

4.2. Models Tests 

4.2.1. Testing for Serial Correlation 
The Durbin’s alternative test strongly rejects the null of no first-order serial correlation, so the model 

was refitted with three lags of rEGX30 included as regressors and then rerun. 

Although L2.rEGX30 is not statistically different from zero, the output indicates that including 

the three lags of rEGX30 has removed any serial correlation from the errors as shown in Table 3, and 

the test strongly accepts the null of no first-order serial correlation. Additionally, for rNikkei225 table 

4 indicates that the test strongly accepts the null of no first-order serial correlation. 

 
Table 3: Durbin's Alternative Test for Autocorrelation for Stock Returns for EGX30 

 
lags(p) chi2 df Prob>chi2 

1 1.61 1 0.2045 

2 1.61 1 0.2045 

3 1.61 1 0.2045 

H0: no serial correlation 

 
Table 4: Durbin's AlternativeT for Autocorrelation for Stock Returns for Nikkei225 

 
lags(p) chi2 df Prob>chi2 

        

1 1.657 1 0.1980 

H0: no serial correlation 

 

4.2.2. Testing for Autoregressive Conditional Heteroskedasticity 

Engle (1982) suggests a Lagrange Multiplier Test (LM) for checking for autoregressive conditional 

heteroskedasticity (ARCH) in the errors. The null hypothesis is tested and there are no ARCH effects 

in the residuals. The results of this ARCH-LM test for EGX30 series and Nikkei225 series are reported 

in Table 5 and Table 6, respectively. Additionally, the volatility clustering pattern observed on return 

series graph depicted on Figure 1 and Figure 2 above suggests ARCH type model, as well.  

Table 5 shows the results for tests of ARCH(1), ARCH(2), and ARCH(3) effects for EGX30 

series, respectively. At the 1% significance level, all three tests reject the null hypothesis that the errors 

are not autoregressive conditional heteroskedastic. Table 6 shows the results for tests of ARCH(1), 

ARCH(2), and ARCH(3) effects for Nikkei225 series, respectively. At the 1% significance level, all 

three tests reject the null hypothesis that the errors are not autoregressive conditional heteroskedastic. 
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Table 5: LM Test for Autoregressive Conditional Heteroskedasticity (ARCH) for Stock Returns for EGX30 

 
lags(p) chi2 df Prob>chi2 

1 211.443 1 0.0000 

2 155.369 2 0.0000 

3 106.714 3 0.0000 

H0: no ARCH effects      vs.  H1: ARCH(p) disturbance 

 
Table 6: LM Test for Autoregressive Conditional Heteroskedasticity (ARCH) for Stock Returns for 

Nikkei225 

 
lags(p) chi2 df Prob>chi2 

1 133.731 1 0.0000 

2 258.871 2 0.0000 

3 186.939 3 0.0000 

H0: no ARCH effects      vs.  H1: ARCH(p) disturbance 

 

Therefore, these results reject H0 and show that the series has ARCH effect on the residuals, 

implying that variance of returns of EGX30 series and Nikkei225 series are non-constant.  

 

4.3. Empirical Results 

Since the residuals have ARCH effects GARCH is employed process to model this conditional 

heteroscedasticity. Considering that the data is not normally distributed GARCH parameters are 

estimated and the ARMA(1,1) mean equation is estimated.   

 

4.3.1 Parameter Estimation of Symmetric GARCH Models 

4.3.1.1. The GARCH (1, 1) Model 

The reported �� (ARCH term) measures the extent to which a volatility shock today feeds through into 

next period’s volatility (Campbell et al. 1997). The coefficient for EGX30 is 0.2580729 which shows 

the presence of volatility clustering in the series over the period. The volatility changes over time and 

its degree shows a tendency to persist, i.e., there are periods of low volatility and periods where 

volatility is high. The estimate of �� (GARCH term) coefficient is 0.8161335 indicates a long memory 

in the variance. This means that changes in the current volatility will affect future volatilities for a long 

period or the impact of old news on volatility is long lasting. The sum of ARCH and GARCH terms 

�� + �� is 1.0742064 indicating volatility shocks are quite persistent. The financial implication of 

these coefficients for investors is that EGX30 index returns’ volatility exhibits clustering, and this 

permits investors to establish future positions in expectation of this characteristic. The same occurs for 

the series, Nikkei225, the estimate of �� coefficient is 0.2425265 and this shows the presence of 

volatility clustering in the series over the period. The volatility changes over time and its degree shows 

a tendency to persist, i.e., there are periods of low volatility and periods where volatility is high. The 

estimate of β1 (GARCH term) coefficient is 0.9464579 indicates a long memory in the variance. The 

sum of ARCH and GARCH terms �� + ��is 1.1889844 indicate that the random error series is non-

stationary, and this is the main difference between the estimation results of EGX30 and Nikkei225 

indices. Estimation results are reported on Table 7 and Table 8. 

It is clear that the parameters of the model are significant. The variance intercept term cons in 

the `ARCH' panel is very small, and the `ARCH'-parameter `L1.arch' is around 0.25, 0.24 while the 

coefficient on the lagged conditional variance `L1.garch' is larger at 0.81., 0.94 for EGX30 and 

Nikkei225. 
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Table 7: Estimation Results of GARCH Model for Stock Returns for EGX30 

 
Number of obs   =      3580           

Distribution: Gaussian       

Log likelihood = -6397.824                                                      

 

------------------------------------------------------------------------------ 

| OPG 

rEGX30 Coef. Std.Err. z P>|z| [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

rEGX30 | 

_cons 0.0837 0.022839 3.66 0.000 0.038936 0.1284632 

-------------+---------------------------------------------------------------- 

ARCH | 

arch 

L1. 0.258073 0.018825 13.71 0.000 0.221176 0.2949697 

| 

garch 

L1. 0.816134 0.075506 10.81 0.000 0.668144 0.964123 

| 

_cons -0.16971 0.148546 -1.14 0.253 -0.46085 0.121436 

------------------------------------------------------------------------------ 

 
Table 8: Estimation Results of GARCH Model for Stock Returns for Nikkei225 

 
Number of obs   =      3580 

Distribution: Gaussian                                                

Log likelihood =  -6311.482 

 

------------------------------------------------------------------------------ 

| OPG 

rNikkei225 Coef. Std.Err. z P>|z| [95% Conf.Interval] 

-------------+---------------------------------------------------------------- 

rNikkei225 | 

_cons 0.035104 0.020528 1.71 0.087 -0.0051289 0.075338 

-------------+---------------------------------------------------------------- 

ARCH | 

Arch 

L1. 0.242527 0.021698 11.18 0.000 0.1999997 0.285053 

| 

Garch 

L1. 0.946458 0.083928 11.28 0.000 0.7819616 1.110954 

| 

_cons -0.40289 0.15175 -2.65 0.008 -0.7003128 -0.10546 

------------------------------------------------------------------------------ 

 

4.3.1.2. GARCH-in-MEAN (1, 1) Model 
It is clear that the parameters of the model are significant. The header describes the estimation sample 

and reports a Wald test against the null hypothesis that all the coefficients on the independent variables 

in the mean equations are zero. Here the null hypothesis is rejected for EGX 30 index, but the null 

hypothesis is accepted for Nikkei225 index. 

For EGX 30 index, the estimated parameter on the mean equation (sigma2 in the ARCHM 

panel) has a negative sign but is statistically significant. It could be concluded that for these returns, 

there is a negative feedback from the conditional variance to the conditional mean. This means that the 

greater the holding of the stock, the greater the risk and the lower the return. Here, it would be advised 

that the investor exits quickly from this financial portfolio. On the contrary, for Nikkri225 index, the 
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estimated parameter on the mean equation has a positive sign but is statistically not significant. It could 

be concluded that for these returns, there is no feedback from the conditional variance to the 

conditional mean. The results are reported on Table 9 and 10. 

 
Table 9: Estimation Results of GARCH-in-MEAN Model for Stock Returns for EGX30 

 
Number of obs   =      3580 

Distribution: Gaussian                                   Wald chi2(1)    =      4.50 

Log likelihood = -6395.396                           Prob > chi2     =    0.0340 

 
------------------------------------------------------------------------------ 

| OPG 

rEGX30 Coef. Std.Err. z P>|z| [95% Conf.Interval] 

-------------+---------------------------------------------------------------- 

rEGX30 | 

_cons 0.199307 0.056059 3.56 0 0.089433 0.309181 

-------------+---------------------------------------------------------------- 

ARCHM | 

sigma2 -0.05761 0.027172 -2.12 0.034 -0.11087 -0.00435 

-------------+---------------------------------------------------------------- 

ARCH | 

arch 

L1. 0.255324 0.018388 13.89 0.000 0.219284 0.291364 

| 

garch 

L1. 0.828698 0.074719 11.09 0.000 0.682251 0.975145 

| 

_cons -0.19552 0.147081 -1.33 0.184 -0.48379 0.092754 

------------------------------------------------------------------------------ 

 
Table 10: Estimation Results of GARCH-in-MEAN Model for Stock Returns for Nikkei225 

 
Number of obs   =      3580    

Distribution: Gaussian                                 Wald chi2(1)    =      2.82  

Log likelihood = -6309.878                         Prob > chi2     =    0.0928 

 

------------------------------------------------------------------------------ 

| OPG 

rNikkei225 Coef. Std.Err. z P>|z| [95% Conf.Interval] 

-------------+---------------------------------------------------------------- 

rNikkei22

5 | 

_cons -0.05378 0.05712 -0.94 0.346 -0.16573 0.058175 

-------------+---------------------------------------------------------------- 

ARCHM | 

sigma2 0.048268 0.028718 1.68 0.093 -0.00802 0.104554 

-------------+---------------------------------------------------------------- 

ARCH | 

Arch 

L1. 0.243199 0.0216 11.26 0.000 0.200863 0.285535 

| 

Garch 

L1. 0.940985 0.084374 11.15 0.000 0.775614 1.106355 

| 

_cons -0.39407 0.153076 -2.57 0.010 -0.6941 -0.09405 

------------------------------------------------------------------------------ 
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4.3.2. Parameter Estimation of Asymmetric GARCH Models 

4.3.2.1. EGARCH (1, 1) Model 
The exponential GARCH (EGARCH) model extends the classical GARCH by correcting the non-

negativity constraint and by allowing for asymmetries. 

It is clear that the parameters of the model are significant for EGX 30 and Nikkei225 indices 

and this indicates the model is appropriate to analyze the stock market data in Egypt. The negative 

estimate on the `L1.earch' (leverage asymmetric effect) for EGX 30 and Nikkei225 indices is 

significant and this means that the volatility is asymmetry, and the negative “L1.earch” coefficient 

implies that negative returns have a greater impact on future volatility than positive returns. It indicates 

that negative shocks imply higher conditional variance than positive shocks. In the real world, 

investors are more responsive to negative news compared to positive news and imply that the volatility 

spillover mechanism is asymmetric.  

Since asymmetry coefficient, “L1.earch_a” coefficient for EGX 30 and Nikkei225 indices is 

significant and positive, it is expected that the relationship between the past variance and the current 

variance is positive in absolute value. This indicates that the existence of leverage effect is observed in 

returns of the Egyptian and Japan stock markets. Estimation results are reported on Table 11 and Table 

12. 

 
Table 11: Estimation Results of EGARCH Model for Stock Returns for EGX30 

 
Number of obs   =      3580 

Distribution: Gaussian                                                

Log likelihood = -6399.144 

 
------------------------------------------------------------------------------  

| OPG 

rEGX30 Coef. Std.Err. z P>|z| [95% Conf.Interval] 

-------------+---------------------------------------------------------------- 

rEGX30 | 

_cons 0.072755 0.02207 3.3 0.001 0.029497 0.116012 

-------------+---------------------------------------------------------------- 

ARCH | 

Earch 

L1. -0.04998 0.015702 -3.18 0.001 -0.08076 -0.01921 

| 

earch_a 

L1. 0.465918 0.022496 20.71 0.000 0.421827 0.510008 

| 

Egarch 

L1. 1.003404 0.06344 15.82 0.000 0.879064 1.127745 

| 

_cons -0.0368 0.050345 -0.73 0.465 -0.13548 0.061873 

------------------------------------------------------------------------------ 
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Table 12: Estimation Results of EGARCH Model for Stock Returns for Nikkei225 

 
Number of obs   =      3580 

Distribution: Gaussian                                                

Log likelihood = -6294.772    

 

------------------------------------------------------------------------------  

| OPG 

rNikkei225 Coef. Std.Err. z P>|z| [95% Conf.Interval] 

-------------+----------------------------------------------------------------  

rNikkei225 | 

_cons 0.010308 0.021565 0.48 0.633 -0.03196 0.052574 

-------------+----------------------------------------------------------------  

ARCH | 

earch 

L1. -0.08616 0.015265 -5.64 0.000 -0.11608 -0.05624 

| 

earch_a 

L1. 0.437894 0.028376 15.43 0.000 0.382278 0.493509 

| 

egarch 

L1. 1.205213 0.064303 18.74 0.000 1.079183 1.331244 

| 

_cons -0.18547 0.049191 -3.77 0.000 -0.28189 -0.08906 

------------------------------------------------------------------------------ 

 

 

5.  The GJR-GARCH (1, 1) Model 
The GJR model is a simple extension of the GARCH model with an additional term added to account 

for possible asymmetries. It is clear that the parameters of the model are significant for EGX 30 and 

Nikkei225 indices and this indicates that the model is appropriate. Similar to the EGARCH model; it is 

found that all ARCH, TARCH and GARCH terms are statistically significant for EGX 30 and 

Nikkei225 indices. 

A negative coefficient estimate is found on the “L1.tarch” term (leverage asymmetric effect) 

for EGX 30 and Nikkei225 indices. This is significant and this means that the volatility is asymmetry. 

The negative L1.tarch coefficient implies that negative effects lead in the coming period to greater 

conditional variance than positive effects, leading to further price declines. This indicates that the 

existence of leverage effect is observed in returns of the Egyptian and Japan stock markets. Estimation 

results are reported on Table 13 and Table 14. 
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Table 13: Estimation Results of GJR-GARCH Model for Stock Returns for EGX30 

 
Number of obs   =      3580 

Distribution: Gaussian                                                

Log likelihood = -6395.487 

 

------------------------------------------------------------------------------ 

| OPG 

rEGX30 Coef. Std.Err. Z P>|z| [95% Conf.Interval] 

-------------+---------------------------------------------------------------- 

rEGX30 | 

_cons 0.074131 0.023579 3.14 0.002 0.027917 0.120344 

-------------+---------------------------------------------------------------- 

ARCH | 

arch 

L1. 0.295315 0.023882 12.37 0.000 0.248508 0.342123 

| 

tarch 

L1. -0.08367 0.028027 -2.99 0.003 -0.1386 -0.02874 

| 

garch 

L1. 0.822745 0.078364 10.5 0.000 0.669155 0.976336 

| 

_cons -0.15163 0.15126 -1 0.316 -0.4481 0.14483 

------------------------------------------------------------------------------ 

 
Table 14: Estimation Results of GJR-GARCH Model for Stock Returns for Nikkei225 

 
Number of obs   =      3580 

Distribution: Gaussian                                                

Log likelihood = -6302.986 

 

------------------------------------------------------------------------------ 

| OPG 

rNikkei225 Coef. Std.Err. z P>|z| [95% Conf.Interval] 

-------------+---------------------------------------------------------------- 

rNikkei225 | 

_cons 0.012722 0.021756 0.58 0.559 -0.02992 0.055363 

-------------+---------------------------------------------------------------- 

ARCH | 

arch 

L1. 0.327724 0.033079 9.91 0.000 0.262891 0.392558 

| 

tarch 

L1. -0.15957 0.030222 -5.28 0.000 -0.2188 -0.10033 

| 

garch 

L1. 0.998586 0.081333 12.28 0.000 0.839176 1.157995 

| 

_cons -0.46177 0.146329 -3.16 0.002 -0.74857 -0.17497 

------------------------------------------------------------------------------ 

 

4.3.3. Parameter Estimation of Multivariate GARCH Models 
For each dependent variable, the estimates for the conditional mean equation are found first, followed 

by the conditional variance estimates in a separate panel. It is evident that the parameter estimates are 

all statistically significant. In the final panels Stata reports results for the conditional correlation 

parameters. For example, the conditional correlation between the standardized residuals for ` rEGX30, 
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and rNikkei225 estimated to be 0083034 and not statistically significant, indicates no relationship at all 

between rEGX30, and rNikkei225. 

 
Table 15: Estimation Results of Multivariate GARCH Models for EGX30 and Nikkei225 

 
Number of obs   =      3580 

Distribution: Gaussian                                                

Log likelihood = -12709.18 

 

----------------------------------------------------------------------------------------- 

| Coef. Std.Err. z P>|z| [95% Conf.Interval] 

------------------------+---------------------------------------------------------------- 

rEGX30 | 

_cons 0.08388 0.02306 3.6 0.000 0.0386 0.12910 

------------------------+---------------------------------------------------------------- 

ARCH_rEGX30 | 

Arch 

L1. 0.25805 0.02748 9.3 0.000 0.2041 0.31191 

| 

Garch 

L1. 0.81629 0.09574 8.5 0.000 0.6286 1.00394 

| 

_cons -0.17001 0.18233 -0.99 0.350 -0.527 0.18736 

------------------------+---------------------------------------------------------------- 

rNikkei225 | 

_cons 0.03516 0.02168 1.6 0.100 -0.007 0.07766 

------------------------+---------------------------------------------------------------- 

ARCH_rNikkei225 | 

Arch 

L1. 0.24282 0.03138 7.7 0.000 0.1813 0.30433 

| 

Garch 

L1. 0.94588 0.11192 8.4 0.000 0.7265 1.16525 

| 

_cons -0.40207 0.19957 -2.0 0.040 -0.793 -0.0109 

------------------------+---------------------------------------------------------------- 

corr(rEGX30,rNikkei225) 0.008303 0.016704 0.5 0.619 -0.024 0.04104 

----------------------------------------------------------------------------------------- 

 

4.3.4. Forecasting using Nelson EGARCH 
This sub-section is focused on generating forecasts based on the Nelson's EGARCH model estimated 

earlier for the forecast period 31Dec2017 to 31Dec2019. The conditional variance forecasts are 

examined graphically by creating Plot 1 and Plot 2 which contain the static and dynamic forecasts 

respectively. For the dynamic forecasts (red line) for EGX30 index and Nikkei 225 indices, the value 

of the conditional variance starts from a historically low level at the end of the estimation period, 

relative to its unconditional average. Therefore, the forecasts converge upon their long-term mean 

value from below as the forecast horizon increases.  

Turning to the static forecasts (blue line) for EGX30 index, it is evident that the variance 

forecasts have one large spike in mid-2018 and another large spike in late 2018. After a period of 

relatively low conditional variances in the first half of 2019, the variances stabilize and enter a phase of 

historically quite high variance in the second half of 2019. It is evident that the variance forecasts have 

one large spike in mid-2019 and another large spike in late 2019. Turning to the static forecasts (blue 

line) for Nikkei 225 index, it is evident that the variance forecasts have one large spike in first 2018 

and another large spike in mid-2018. After a period of relatively high conditional variances in the first 
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half of 2018, the variances stabilize and enter a phase of historically quite low variance in the second 

half of 2018. It is evident that the variance forecasts have one spike in first 2019 and another large 

spike in late 2019.  

2020 sees a large decrease in conditional variances and they remain at a relatively low level for 

the rest of the sample period for EGX30 index and Nikkei 225 indices. Since in the case of the static 

forecasts a series of rolling one-step ahead forecasts for the conditional variance are investigated, the 

values show much more volatility than those for the dynamic forecasts as shown in Figure 5 and Figure 

6. Similar to previous studies, it is concluded that stock markets in developed countries like Japan are 

less volatile as compared to those in emerging countries. 

 
Figure 5: Static and Dynamic Forecasts of the Conditional Variance for EGX30 

 

 
 

Figure 6: Static and Dynamic Forecasts of the Conditional Variance for Nikkei225 

 

 
 

4.3.5. Choosing the Best Fitting Model 
To evaluate the performance of the GARCH models used to analyze the Egyptian and Japan stock 

markets data, the following selection criteria is used: 

1. Akaike Information Criterion (AIC). 

2. Bayesian information criterion (BIC).  
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Table 16: Results of Different GARCH Models Tests for EGX30 

 
Model AIC BIC 

GARCH  12803.65 12828.38 

GARCH-In-MEAN 12800.79 12831.71 

EGARCH 12808.29 12839.2 

GJR-GARCH 12800.97 12831.89 

Multivariate GARCH 25436.37 25492.01 

Forecasting using EGARCH 11677.3 11707.67 

 
Table 17: Results of Different GARCH Models Tests for Nikkei225 

 
Model AIC BIC 

GARCH  12630.96 12655.7 

GARCH-In-MEAN 12629.76 12660.67 

EGARCH 12599.54 12630.46 

GJR-GARCH 12615.97 12646.89 

Multivariate GARCH 25436.37 25492.01 

Forecasting using EGARCH 11503.25 11533.62 

 

From Table (16, 17) above, it can be seen that the Forecasting using Nelson EGARCH model 

has the lowest AIC and BIC values (11677.3, -11707.67, 11503.25, 11533.62) for EGX30 and 

Nikkei225 indices respectively. Thus, it can be concluded that Nelson EGARCH model is the best 

model for the Egyptian and Japan stock markets. 

 

 

5.  Conclusion 
This paper uses standard GARCH, asymmetric EGARCH and GJR-GARCH models to analyze 

volatility in EGX30 and Nikkei225 returns for the period of 3
rd

 January 2001 to 31
st 

December 2019.  

In addition, considering that Japan is one of the world largest economies, any slowdown or changes in 

its stock markets are expected to bring about spillover effects to other close economies, for example, 

trading partners especially if they are emerging economies. In other words, the contribution is made by 

addressing the gap in the literature that identifies which volatility model outperforms other models in 

terms of in-sample and out-of-sample forecasting accuracy for the Egyptian and Japan stock markets. 

The findings of GARCH (1, 1) model show nonlinear structure in the conditional variance of 

the returns and this dynamic may be simulated with the GARCH (1, 1) model. Estimates of the 

model (�� + ��) for EGX30 show the variance of the series has long memory and shocks on volatility 

are quite persistent, and this supports the mean reverting process. The sum of ARCH and GARCH 

terms for Nikkei225 indicate that the random error series is non-stationary. 

The findings of GARCH-in-MEAN model show that for EGX30 returns, there is a negative 

feedback from the conditional variance to the conditional mean. Here an investor would be advised to 

exit quickly from this financial portfolio. On the contrary, for Nikkri225 index, the estimated 

parameter on the mean equation has a positive sign but is statistically not significant. 

The findings of EGARCH and GJR-GARCH models show that the series have leverage effect, 

and the impact of the shocks is asymmetric, and consequently it can be stated that the impact of 

negative shocks on volatility are higher than positive shocks of the same size for both EGX30 and 

Nikkei225 indices. This finding is consistent with the literature. Multivariate GARCH model indicates 

no relationship at all between rEGX30, and rNikkei225. 

According to the results obtained by the two selection criteria —AIC, and BIC—it is concluded 

that the most appropriate models for modeling the volatility of EGX30 and Nikkei225 for the full 

sample is Nelson EGARCH model. Furthermore, the results of this study support those of previous 

studies (Abdalla and Winker, 2012; Abdelhafez , 2018), in which it is concluded that, compared with 
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linear GARCH-class models, non-linear GARCH-class models are a better fit for measuring the 

volatility of stock market returns (e.g., Gabriel and Ugochukwu, 2012; Al Rahahleh and Bhatti, 2017). 

In addition, the results suggest that emerging stock markets can have higher volatilities than 

those in developed markets. Further, these results imply that the EGARCH model might be more 

useful than other models when implementing risk management strategies and developing stock pricing 

model.  

 

 

References 
[1] Abdalla, S. and Winker, P. (2012) ‘Modelling stock market volatility using univariate GARCH 

models: Evidence from Sudan and Egypt’, International Journal of Economics and 
Finance, Vol.4, No.8, pp.161-176. 

[2] Abdelhafez, M. (2018) ‘Using GARCH Models for modelling and forecasting volatility an 

empirical study of the Egyptian stock market’, European Journal of Social Sciences, Vol.57, 
No.2, pp.167-178. 

[3] Abounoori, E. and Zabol, M. (2020) ‘Modelling Gold Volatility: Realized GARCH 

Approach’, Iranian Economic Review, Vol.24, pp.299-311. 

[4] Adesina, K. (2013) ‘Modelling stock market return volatility: GARCH evidence from Nigerian 

Stock Exchange’, International journal of financial management, Vol.3, p.37. 

[5] Al Rahahleh, N. and Bhatti, M. (2017) ‘Co-movement measure of information transmission on 

international equity markets’, Physica A: Statistical Mechanics and its Applications, Vol.470, 

pp.119-131.  

[6] Al Rahahleh, N. and Kao, R. (2018) ‘Forecasting volatility: Evidence from the Saudi stock 

market’, Journal of Risk and Financial Management, Vol.11 No.4, p.84. 

[7] Alexander, C. (1999) Risk Management and Analysis: Measuring and Modelling Financial 

Risk, New York: John Wiley and Sons. 

[8] Aliyev, F. (2019) ‘Testing market efficiency with nonlinear methods: Evidence from Borsa 

Istanbul’, International Journal of Financial Studies, Vol.7, No.2, p.27. 

[9] Altun, E. (2018) ‘A new approach to Value-at-Risk: GARCH-TSLx model with inference’, 

Communications in Statistics-Simulation and Computation, pp.1-18. 

[10] Andersson, J. (2001) ‘On the normal inverse Gaussian stochastic volatility model’, Journal of 
Business & Economic Statistics, Vol.19, No.1, pp.44-54. 

[11] Andersen, T., Bollerslev, T., Diebold, F., and Labys, P. (2003) ‘Modeling and Forecasting 

Realized Volatility’, Econometrica, Vol.7, pp.579-625. 

[12] Augustyniak, M., Boudreault, M. and Morales, M. (2018), ‘Maximum likelihood estimation of 

the Markov-switching GARCH model based on a general collapsing procedure’, Methodology 
and Computing in Applied Probability, Vol.20, No.1, pp.165-188. 

[13] Baillie, R. and Bollerslev, T. (1991) ‘Intra-day and inter-market volatility in foreign exchange 

rates’, The Review of Economic Studies, Vol.58, pp.565-585. 

[14] Baillie, R., Bollerslev, T. and Mikkelsen H. (1996) ‘Fractionally Integrated Generalized 

Autoregressive Conditional Heteroskedasticity’, Journal of Econometrics, Vol.74, p.3. 

[15] Balaban, E. (2004) ‘Comparative forecasting performance of symmetric and asymmetric 

conditional volatility models of an exchange rate’, Economic Letters, Vol.83, pp.99-105. 

[16] Bekaert, G. and Wu, G. (2000) ‘Asymmetric volatility and risk in equity markets’, The review 
of financial studies, Vol.13 No.1, pp.1-42. 

[17] Black, F. (1976) ‘Studies of stock market volatility changes’, Proceedings of the American 
Statistical Association Business and Economic Statistics Section. 

[18] Black, F. (1976) ‘The pricing of commodity contracts’, Journal of Financial Economics, Vol.3, 

pp.167-179. 



International Research Journal of Finance and Economics - Issue 181 (2021) 63 

63 

 

[19] Bollerslev, T. (1986), ‘Generalized autoregressive conditional heteroskedasticity’, Journal of 
econometrics, Vol.31, No.3, pp.307-327. 

[20] Bollerslev, T., Chou, R.Y. and Kroner, K.F. (1992) ‘ARCH modeling in finance: A review of 

the theory and empirical evidence’, Journal of econometrics, Vol.52, No.1-2, pp.5-59. 

[21] Brooks C. (Eds.) (2008) ‘Introductory econometrics for finance’, Cambridge University Press 

[22] Brownlees, C.T. and Gallo, G.M. (2010), ‘Comparison of volatility measures: a risk 

management perspective’, Journal of Financial Econometrics, Vol.8, No.1, pp.29-56. 

[23] Campbell, John Y., A. Lo and A.C. MacKinlay. (1997) ‘The econometrics of financial 

markets’, Princeton University Press, Princeton NJ. 

[24] Chang, T.C., Wang, H. and Yu, S. (2019) ‘A GARCH model with modified grey prediction 

model for US stock return volatility’, Journal of Computational Methods in Sciences and 
Engineering, Vol.1, pp.197-208. 

[25] Cheteni, (2016) ‘Stock market volatility using GARCH models: Evidence from South Africa 

and China stock markets’, Journal of Economics and Behavioral Studies, Vol.8, No.6, pp.237-

245. 

[26] Cizeau, P., Liu, Y., Meyer, M., Peng, C.K. and Stanley, H. (1997) ‘Volatility distribution in the 

S&P500 stock index’, arXiv preprint cond-mat/9708143. 

[27] Donaldson, R. and Kamstra, M. (2005) ‘Volatility Forecasts, Trading Volume and the ARCH 

vs Option Implied Volatility Tradeoff’, Journal of Financial Research, Vol.27, pp.519-538. 

[28] Durbin, J. and Watson, G.S. (1950) ‘Testing for serial correlation in least squares regression: 

I’, Biometrika, Vol.37, No.3/4, pp.409-428. 

[29] Dury, M.E. and Xiao, B. (2018) ‘Forecasting the Volatility of the Chinese Gold Market by 

ARCH Family Models and extension to Stable Models’. hal-01709321f. 

[30] Engle, R.F. (1982) ‘Autoregressive conditional heteroscedasticity with estimates of the 

variance of United Kingdom inflation’, Econometrica: Journal of the Econometric Society, 

pp.987-1007. 

[31] Engle, R. (1990) ‘Autoregressive Conditional Heteroscedasticity with Estimates of the Stock 

Volatility and the Crash of 87: Discussion’, The Review of Financial Studies, Vol.3, p.103. 

[32] Engle, R. and Ng, V. (1993) ‘Measuring and testing the impact of news on volatility’, The 
journal of finance, Vol.48, No.5, pp.1749-1778. 

[33] Engle, R.F. and Sheppard, K. (2001) ‘Theoretical and empirical properties of dynamic 

conditional correlation multivariate GARCH’, National Bureau of Economic Research, 
No.w8554. 

[34] Figlewski, S. (2004) Forecasting volatility. PhD thesis: New York University, New York, US.  

[35] Engle, R. (2002) ‘New Frontiers for Arch Models’, Journal of Applied Econometrics, Vol.17, 

pp.425-446. 

[36] Engle, R. and Patton, A. (2007) ‘What good is a volatility model?’ Forecasting volatility in the 
financial markets, pp.47-63, Butterworth-Heinemann. 

[37] Franses, P. and Van Dijk, D. (1996) ‘Forecasting stock market volatility using (non‐linear) 

Garch models’, Journal of Forecasting, Vol.15, No.3, pp.229-235. 

[38] Franses, P. and Van Dijk, D. (Eds.) (2000) Non-linear time series models in empirical finance, 

Cambridge University Press. 

[39] Gabriel, A. and Ugochukwu, W. (2012) ‘Volatility estimation and stock price prediction in the 

Nigerian stock market’, International Journal of Financial Research, Vol.3, No.1, p.2. 

[40] Gabriel, A. (2012) ‘Evaluating the forecasting performance of GARCH models evidence from 

Romania’, Procedia-Social and Behavioral Sciences, Vol.62, pp.1006-1010. 

[41] Glosten, L., Jagannathan, R. and Runkle, D. (1993) ‘On the relation between the expected value 

and the volatility of the nominal excess return on stocks’, The journal of finance, Vol.48 No.5, 

pp.1779-1801. 



64 International Research Journal of Finance and Economics - Issue 181 (20201) 

 

[42] Hamadu, D. and Ibiwoye, A. (2010) ‘Modelling and forecasting the volatility of the daily 

returns of Nigerian insurance stocks’, International Business Research, Vol.3, No.2, p.106. 

[43] Hansen, P. and Lunde, X. (2005) ‘A Forecast Comparison of Volatility Models: Does Anything 

Beat a GARCH (1,1)’, Journal of Applied Econometrics, Vol.20, pp.873-889. 

[44] JK, K., Mwita, P.N. and Nassiuma, D.K. (2015) ‘Volatility Estimation of Stock Prices using 

GARCH Method’. 

[45] John D. Levendis (Eds.) (2018) Time Series Econometrics: Learning Through Replication 
Springer Texts in Business and Economics, ISSN 2192-4333, DOI: 10.1007/978-3-319-98282-

3. 

[46] Kayahan, B., Stengos, T., and Saltoglu, B. (2002) ‘Intra-day features of realized volatility: 

evidence from an emerging market’, International Journal of Business and Economics, Vol.1. 

[47] Koy, A. and Ekim, S. (2016) ‘Borsa Istanbul Sektör Endekslerinin Volatilite Modellemesi: 

Modelling the Volatility of Istanbul Stock Exchange Sector Indices’, Trakya Üniversitesi 
Ġktisadi ve Ġdari Bilimler Fakültesi E-Dergi Temmuz, Vol. 5, No. 2. 

[48] Kumar Narayan, P. (2005) ‘Are the Australian and New Zealand stock prices nonlinear with a 

unit root?’, Applied Economics, Vol.37, No.18, pp.2161-2166. 

[49] Lee, S., Nguyen, L. and Sy, M. (2017) ‘Comparative study of volatility forecasting models: The 

case of Malaysia, Indonesia, Hong Kong and Japan stock markets’, Economics, Vol.5, No.4, 

pp.299-310. 

[50] Lim, C. and Sek, S. (2013) ‘Comparing the performances of GARCH-type models in capturing 

the stock market volatility in Malaysia’, Procedia Economics and Finance, Vol.5, pp.478-487. 

[51] Manera, M. and Forte, G. (2002) ‘Forecasting volatility in European stock markets with non-

linear GARCH models’, Working paper. 

[52] Mandelbrot, B. (1963), ‘The variation of certain speculative prices’, Journal of Business, 

Vol.36, pp.394-419. 

[53] McMillan, D., Speight, A. and ap Gwilym, O. (2000) ‘Forecasting UK stock market 

volatility’ Applied Financial Economics, Vol.10, No.4, pp.435-448. 

[54] Nelson, D. (1991) ‘Conditional Heteroskedasticity in Asset Returns: A New Approach’, 

Econometrica, Vol.59, p.347. 

[55] Ng, H. and McAleer, M. (2004), ‘Recursive modelling of symmetric and asymmetric volatility 

in the presence of extreme observations’, International Journal of Forecasting, Vol.20, No.1, 

pp.115-129. 

[56] Ogum, G. (2002), ‘An analysis of asymmetry in the conditional mean returns: evidence from 

three Sub-Saharan Africa emerging equity markets: finance letter’, African Finance 
Journal, Vol.4, No.1, pp.78-82. 

[57] Patev, P., and Kanaryan, N. (Eds.) (2006) ‘Modelling and forecasting the volatility of the 

central European stock market’, Economic transition in Central and Eastern Europe, pp.194-

215. 

[58] Pilbeam, K. and Langeland, K. (2015) ‘Forecasting exchange rate volatility: GARCH models 

versus implied volatility forecasts’, International Economics and Economic Policy, Vol.12, 

No.1, pp.127-142. 

[59] Poon, S. and Granger, C. (2003) ‘Forecasting volatility in financial markets: A review’, Journal 
of economic literature, Vol.41, No.2, pp.478-539. 

[60] Raju, M. and Ghosh, A. (2004) ‘Stock market volatility–An international comparison’, 

Securities and Exchange Board of India. 
[61] Shi, Y. and Yang, Y. (2018) ‘Modeling high frequency data with long memory and structural 

change: A-HYEGARCH model’, Risks, Vol.6 No.2, pp.26. 

[62] Tsay, R. (Eds.) (2014) An introduction to analysis of financial data with R, John Wiley & Sons. 

[63] Uğurlu, E. (2014) ‘Modelling volatility: Evidence from the bucharest stock exchange’, Journal 
of Applied Economic Sciences (JAES), Vol.9, No.30, pp.718-720. 


