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Abstract 

 

This paper empirically investigates the liquidity adjusted Value-at-Risk (LaVaR) of 

Single Stock Futures (SSFs) using the Hellinger distance measure by sensitizing 

endogenous liquidity risk with trade sizes at 1%, 5%, and 6%. We find that by 

incorporating exogenous and endogenous liquidity risk adjusted, LaVaR produces more 

accurate risk estimates. The practical failure rates of all SSFs are largely consistent with 

their theoretical failure rates. Despite the use of different empirical models, the highest and 

lowest LaVaR are CEF and CJF. 

 

 

Keywords: LaVaR, Hellinger distance measure, Taiwan Single Stock Futures 

JEL Classification: D46, D81, G32 

 

1.  Introduction 
Bank for International Settlements (BIS) classifies risks as belonging to one of five categories: market 

risk, credit risk, operation risk, legal risk, and liquidity risk (see Table 1).In 1988, to calculate a capital 

adequacy ratio, BASEL Committee on Banking Supervision (BSBS)stressed the importance of credit 

risk measures in Basel I Accords. Due to the 1987 U.S. stock market crash,amendment Basel Accord 

emphasized the importance of establishing a standard statistical model and quantitative analysis for 

market risk. In 1996, BCBS stressed the importance of market risk measures and required banks to 

declare their maximum threshold loss under fixed confidence levels and a given time horizon, i.e., 

Value-at- risk (VaR).
1
 (see J. P. Morgan 1996 RiskMetrics measurement; U.S. Securities and Exchange 

Commission VaR information in 1997 financial statements exposure; VaR measure on market risk of 

2004 Basel II Accord).
23

 BCBS furthermore introduced three new directives in the 2004 Basel II 

                                                 
1Value-at-risk (VaR) arose in 1993. By 1996, the amended Basel Accord required banks to comply with the contents to 

calculate VaR thresholds, by evaluating a 5% VaR model over a 12-month test period for 250 trading days (Chen et al., 

2012). We take a 5% one-tailed probability and a 95% confidence levelto test consistency between practical violation 

rates and theoretical proportion of failures. 

2 Data for the2004 Basel II Accordsis taken from http://www.bis.org.  
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Accords to cover exposureoperation risk and legal risk. At the time, the relevant regulations were 

insufficient to adequately compare liquidity risk exposure and other types of risk. However, a 

continuous series of financial crises (i.e., 1997 and 2007-2008) resulted in ongoing low liquidity 

conditions which damaged security markets worldwide. In the face of contagious liquidity risk, the 

BCBS set rules to regulate liquidity exposure in the Basel III Accords. These measures were still 

insufficient to adequately determine the liquidity risk effect on value at risk (see the liquidity 

requirement of the 2010 Basel III Accords)
4
. 

 
Table 1: Basel I, II, III and Risk Exposure 

 
Risk Period 

Liquidity risk 2010~2017 (BASEL III) 

Operation risk 2004 (BASEL II) 

Legal risk 2004 (BASEL II) 

Market risk 1996 (BASEL I extended) 

Credit risk 1988(BASEL I) 

Source: Bulletin Board Download Page on the Basel Committee on Banking Supervision. (Jun. 30, 2016) 

 

As Stoll (2000) pointed out that poor liquidity leads to friction costs in imperfect markets, thus 

creating a gap between theoretical and real market prices (Stoll, 2000; Berkowitz, 2000). However, 

traditional VaR assumes the asset only has market risk, while not any liquidity and credit risk. VaR 

could calculate the threshold loss value at given a specific portfolio, time horizon and one-tailed 

probability by mark-to-market pricing (Jorion, 2006; Chen et al., 2012; Chang et al., 2016). Bangia et 

al. (1999, 2001) introduced liquidity-adjusted Value-at-risk (LaVaR), and involved the liquidity risk to 

adjust the VaR only measure the simple mean-variance at market risk, which is a basic traditional 

LaVaR model based on the imperfect market and frictional cost hypotheses. They noted that 

disregarding the liquidity-adjusted VaR would underestimate risk by between 25% and 30%. Compare 

with traditional VaR assuming the well-liquidity, LaVaR could measure the risk due to the ill-liquidity 

effects. 

Bangia et al. (1999, 2001) also classified liquidity risk into exogenous liquidity risk and 

endogenous liquidity risk, where the bid-ask spread is used as a proxy variable to measure exogenous 

risk. The incrementally incurring spread gap is directly related to the exogenous liquidity risk and 

increased cost of liquidity (COL) of a financial asset on traditional VaR. (Aubier & Saout, 2002; Ourir 

& Snoussi, 2012) Exogenous liquidity risk leads to mispricing between bid and ask prices, and is 

seldom caused by individual investors, but always increases overall market price volatility and risk. 

Investors are typically more concerned with uncontrollable risks and stress the exogenous liquidity risk 

effect, i.e. they look for spread volatility and appraise the COL. Most investors focus exclusively on 

the exogenous liquidity risk effect. On the other hand, trade size is a proxy variable used to measure 

endogenous risk. (Bangia et al., 1999, 2001) The incrementally incurred trade size fluctuation is 

directly related to the exogenous liquidity risk and increased transaction costs of a financial asset. In 

particular, higher exchange volumes will sharply increase the spread volatility and COL. Thus, 

increasing endogenous risk would result in increased exogenous risk in advance and deepen market ill-

liquidity in a vicious circle (Demsetz, 1968; Black, 1971a, 1971b; Kyle, 1985; Glosten & Harris, 1988; 

Stoll, 2000; Simonian, 2011).  

Furthermore, in Bangia et al. (1999, 2001) research, they only define the endogenous liquidity 

risk and explain possible effects on VaR measuring, but did not establish an empirical model and 

largely neglect its role in their empirical research. Lawrence & Robinson (1998), Häberle & Persson 

(2000), Aubier (2002), Zhan & Hun (2001), Shen et al. (2002) and Si & Fan (2012) used exogenous 

                                                                                                                                                                       
3Data for the U.S. Securities and Exchange Commission VaR information in 1997 financial statements exposure is taken 

from https://www.sec.gov/divisions/corpfin/guidance/derivfaq.htm 

4  Data for the 2010Basel III Accords is taken from http://www.bis.org. 



41 International Research Journal of Finance and Economics - Issue 162 (2017) 

 

liquidity risk to refine the traditional VaR only as Bangia et al. (1999, 2001). Some early studies 

incorporated endogenous liquidity risk into LaVaR (e.g., Jarrow & Subramanian, 1997, 2012; 

Berkowitz, 2000; Subramanian & Jarrow, 2001; Cosandey, 2001; Le Saout, 2002). More recently, Al 

Janabi (2011a, 2011b, 2013), Tsai & Li (2015), and Tsai & Wu (2016) used trade size as an empirical 

variable to recalculate the liquidity horizon and measure endogenous liquidity risk effects. Simonian 

(2011) used trade size percentage (d�) as a variable to adjust the endogenous liquidity risk effect on 

traditional LaVaR, assuming a numeric analysis at 1% market size and using the Hellinger distance 

measure concept in his research, which is a new method to adjust the endogenous liquidity risk on 

traditional LaVaR. 

For using Hellinger distance measure to sensitize the endogenous liquidity risk at different 

trade size percentages (d�), we refer to Simonian's (2011) and Bangis et al. (1999, 2001) research. By 

modifying the endogenous liquidity risk on exogenous LaVaR through two sequential empirical 

models, which are traditional LaVaR model and endogenous liquidity risk-adjusted LaVaR model, we 

use 12 Taiwan Single Stock Futures (SSFs) listed on Taiwan Futures Market (TAIFEX) as empirical 

data, and broaden the scope of considering the different trade size percentages, in which, 1% based on 

Simonian's (2011) research, and others are the average and maximum percentages of actual trade size 

in markets.Thus, in Sections 1 and 2, we discuss the concepts of traditional LaVaR and the Hellinger 

distance measure. By using the Hellinger distance measure, we adopt endogenous liquidity risk to 

modify the traditional LaVaR only considering exogenous liquidity risk. In Section 3, we describe 

empirical data through the Taiwan Single Stock Futures (SSFs) and build the empirical models. In 

Sections 4 and 5, we explain the results of empirical models, and compare the consistency of practical 

failure rates and their corresponding theoretical failure rates based on the consistency of the ex-post 

loss and ex-ante VaR according to the back-testing results. We finally suggest implications for SSFs 

investment decision-making. 

 

 

2.  LaVaR and Hellinger Distance Measure and  
The Hellinger distance, also called the Bhattacharyya distance, can be used in metric space to measure 

the degree of disorder between two sets of probabilities in a d-metric state space Ω, e.g., probability P 

and Q. It monitors the probability measure space of P and Q. Suppose P and Q are two normal 

distributions, where P~N(μ�,�, σ�,�) and Q~N(μ�,�, σ�,�)are absolutely continuous with respect to a σ-

finite dominating measure λ. P and Q follow the f-divergence. We use measure theory to quantify the 

similarity distance between the two relationship probabilities, which are like the relationship 

probabilities between traditional LaVaR and endogenous liquidity risk-adjusted LaVaR in this 

research. 

According to Borel’s measures, we consider P and Q to respectively be the relative entropy that 

relies on calculating the divergence of Df (P||Q) in a limited finite measure space σ-field, and the 

measure value of b-a in a specific interval [a, b] for any third probability measure λ. The distance is 

entropy that will initially be divergent and disordered. The convergence will progress gradually from 

the high-entropy phase to the low-entropy phase. The Hellinger distance is defined in terms of the 

Hellinger integral and we apply this concept to calculate the total variation distance. In our research, 

the results reported by Bogahev (2007) and the Hellinger distance are used to provide a convenient 

expression of measures which fall in the range [0, 1] such as b and a. These are the same as the market 

position percentage of trade sizes between 0% and 100%. The Hellinger distance is expressed in 

advance as a norm, and the length of the square of distance is a vector’s inner product or dot product, 

that is H�(P||Q). This can then be written as the total variation distance as H�(P� ⊗ P�, Q� ⊗ Q�) ≤� H�(P||Q) under two probability outcomes which do or do not consider liquidity risk. It can also be 

written as entropy, that is D(P||Q) = � D(P||Q), or as the total variation distance D(P� ⊗ P�, Q� ⊗ Q�) 

under the two probability outcomes which do or do not consider liquidity risk. We calculate the 

distance to determine the probability outcomes under the Lebesgue measure L1, and the total variation 
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measure can be presented as ||P − Q||�. In particular, following the Cauchy-Schwarz inequality, the 

relation between these two probability distributions is ||P − Q||� ≤ 2H(P||Q) ≤  2�||P − Q||�. The 

square of Hellinger distance between P and Q is as following: 

H�(P||Q) = 12 � ��dPdτ − �dQ dτ �
�

dλ 

where H�(P||Q) isthe square of Hellinger distance. 
 ! "  and  %  "  are two Radon–Nikodym derivative 

probability measures and the values won’t be changed despite τ being replaced by other probabilities. 

For compactness, the above distance measure is usually written as 
�� �(√dP − �dQ)�

. To define 

the Hellinger distance in terms of elementary probability theory, τ could be measured using the 

Lebesgue measure, so that 
 ! "  and  %  "  are simply probability density functions. If P and Q are denoted 

as the respective densities f and g, the squared Hellinger distance can be expressed as a standard 

calculus integral, where the second form is obtained by expanding the square and based on the fact that 

the integral of a probability density over its domain must be one. The Hellinger distance H�(P||Q) 

satisfies the property and is derivable in the Cauchy-Schwarz inequality and 0 ≤ H(P||Q) ≤ 1, that is 

as following: 

H�(P||Q) = 12 � (�f(x) − �g(x),� dx = 1 − � �f(x)g(x)dx 

where H�(P||Q) is also asquare of Hellinger distance. f(x) and g(x) are two probability measures of the 

state space Ω, which could be used to measure the difference between traditional LaVaR and 

endogenous adjusted LaVaR at given trade size percentages. 

By combining the probability measure of the Hellinger distance characteristics considered in 

Bogachev’s (2007) and Simonian’s (2011) research, we apply sensitivity analysis for measuring the 

endogenous liquidity risk effect. We assume there are two difference probability distance measures 

between traditional LaVaR considered only the exogenous liquidity risk, and another is involved 

endogenous liquidity risk adjusted LaVaR. The two probability distribution functions f(x) and g(x) are 

supposed as the two normal distributions in the state space Ω. As Lagarias et al. (1998) research, the 

probability distributions are normal distributions (N.D.) and assumed to be absolutely continuous with 

σ-finite dominating measure, which are N(μ-�, σ-�) and N(μ-�, σ-�) and as probability distributions 

of traditional LaVaR and endogenous adjusted LaVaR. The μ-�,� and σ-�,� are the parameters of 

probability distributions under exogenous liquidity risk (i.e., traditional LaVaR), μ-�,� and σ-�,� are the 

parameters for probability distributions incorporating endogenous liquidity risk, the probability density 

functions (PDF) of the normal distributions are respectively 

f(x|μ-�,�, σ-�,�)=
�./0,1√�2 exp (− �� 5678/0,1./0,1 9�) and f(x|μ-�,�, σ-�,�) = 

�./:,1√�2 exp (− �� 5678/:,1./:,1 9�). 

We also regard the probability distance measure between the two probability distributions, i.e., H(P||Q), is as equivalent to the percentage of market trade size (d�), which is between 0% to 100%. 

By assuming the Hellinger distance (d�)at different percentage of trade size, in which, 0% is as 

traditional LaVaR case as Bangis (1999, 2001), 1% is as Simonian's (2011) research, and others are the 

average and maximum percentages of actual trade size in markets, we revalue μ-�,�andσ-�,�� , and then 

recalculate the new COL and the endogenous liquidity risk effect on traditional LaVaR. 
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3.  Data and Methodology 
3.1 Data 

On Jan. 25, 2010, TAIFEX introduced SSFs, the trade size in the initial year was 724,375 units. On 

May 15, 2014, TAIFEX signed a memorandum with Eurex Group to license TWD-denominated daily 

futures listed on Eurex, and increased the SSFs listed from an initial year 33 single stock futures to 

eventually cover all Taiwan-listed securities in 2014, which sharply expanded futures trade size to 

9,325,030 units, and increased more than 12 times by 2014. By daily price limits amendments on 

futures products to 10% in June 2015, also increasing SSFs volume to 12,189,434 units. Market trade 

size ascended to another 30% between 2014 and 2015. Furthermore, observe the trading data for 2014 

to the end of June 30, 2016 (a total of 609 trading observations for each Taiwan-listed securities and 

SSFs), 12 Single Stock Futures (SSFs) listing on Taiwan Futures Market (TAIFEX), they are Taiwan 

financial holding companies also among the Taiwan top 50 companies in terms of high market 

capitalization, with a public float exceeding 5% and stable stock trade sizes in Taiwan Stock Exchange 

(TWSE). The corresponding ticker symbols of SSFs are respectively CEF, CJF, CKF, CLF, CMF, 

CNF, DEF, DNF, DOF, DPF, LOF and LRF. Table 2 shown the corresponding underlying stock and 

financial statements. 

 
Table 2: Taiwan Financial Holding Companies SSFs and Financial Statements 

 
Single Stock 

Futures 

(Ticker 

Symbol) 

Underlying Stock  

financial statements 

Asset Income EPS 

Stock Price 

High Low Average 

CEF Fubon Financial Holding Co. 6160792716 23892514 3.94 69.00 34.70 38.74 

CJF Hua Nan Financial Holdings Co. 2498742336 7690067 1 19.6 13.9 16.6 

CKF Cathay Financial Holding Co. 7807698789 14243235 3.08 56.5 33.6 36.69 

CLF Mega Financial Holding Co. 3343448027 9431773 1.3 13.30 6.94 7.85 

CMF Taishin Financial Holding Co. 1519415261 6701820 0.98 16.2 9.91 12.34 

CNF Chinatrust Financial Holding Co. 4755339067 14306497 1.29 24.80 14.50 16.68 

DEF SinoPac Holdings Co. 1607284236 4982307 0.65 15.10 8.61 9.54 

DNF E.Sun Financial Holding Co. 1844417546 7232972 1.22 22.15 15.85 18.64 

DOF Yuanta Financial Holding Co. 2060989515 6689095 0.9 18.40 9.97 10.49 

DPF First Financial Holding Co. 2488307994 8746263 1.12 22.90 14.15 16.76 

LOF Taiwan Cooperative Financial Holding Co. 3308788132 6890160 0.89 16.40 13.85 14.30 

LRF China Development Financial Holding Co. 893191923 1943281 0.3 13.30 6.94 7.85 

Source: Bulletin Board Download Page on the TWSE. (The data analysis is between Jan. 1, 2014 and Jun. 30, 2016.) 

 

Since the individual futures trade size from 2014 onwards has increased substantially, in the 

same year, TAIFEX introduced almost of all TWSC single stock for market trading, and TAIFEX 

success to list Taiwan futures on Eurex, therefore, we investigate the SSFs through 12 Taiwan financial 

holding companies from 2014 to mid-2016. To observe the trading period between 2014 and mid-2016, 

the trade size percentage (d�hereafter) of Taiwan SSFs is increased,the annual values of 12 SSFs are 

5%, 6% and 5%, respectively. The percentage of participants also increased with respectively annual 

values of 6%, 5% and 5%. Both trade size and participants were obviously stable from 2014 to mid-

2016. The maximum value and average market trading percentage of actual trading percentage at 6% 

and 5%. Thus, by combining the probability measure of the Hellinger distance characteristics, we 

apply sensitivity analysis to involve the endogenous liquidity riskto adjust the traditional LaVaR 

assumed the trade size is at 1%, 5% and 6%, which are respectively the percentages as Simonian’s 

(2011) research, average and maximum trading size of Taiwan SSFs. 

By using the traditional LaVaR model further, which is a simple and practical model that 

simultaneously measures asset pricing of mean-variance and adjusts for exogenous liquidity risk. 

LaVaR model applies the return rate of SSFs to measure the traditional VaR assumed under the market 

risk, and applies bid-ask mean spread as the proxy variable for measuring the exogenous liquidity risk 
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and adjusting the traditional VaR, i.e., cost of liquidity (COL). The empirical datasets are return rate 

and bid-ask mean spread, respectively. As in previous studies, we assume the probability distributions 

of returns and spreads follow a normal distribution. They are N( μ=,�, σ=,�) and N(μ-�,�, σ-�,�). We 

respectively calculate the return rate (μ=,�) and mean spread (μ-�,�) by Models1 and 2. 

μ=,� = ln ( !1!1?0), (Model 1) 

μ-�,� = !@,17!A,1B@,1CBA,1:
, (Model 2) 

where Model 1 is the one-day holding horizon return, P� and P�7� are the daily closing price in periods t 

and t-1. Model 2 is the one-day holding horizon bid-ask mean spread, PD,� and PE,�are bid price and ask 

price in period t. 

Due to the heterogeneous volatility of the return and mean spread, we built Bollerslev’s (1986) 

GARCH models to estimate σ=,��  and σ-�,�� . The empirical models are described as Models3and 4: σ=,�� = α + βσ=,�7�� + γε=,�7�� , (Model 3) σ-�,�� = π + θσ-�,�7�� + τε-�,�7�� , (Model 4) 

where Model 3 is the one-day holding horizon volatility of return, σ=,�� , σ=,�7��  and ε=,�7��  are respectively 

the daily closing volatility and residual in periods t and t-1. Model 4 is the one-day holding horizon 

volatility of mean spread, σ-�,�� , σ-�,�7��  and ε-,�7��  are respectively the daily mean spread volatility and 

residual in periods t and t-1. 

We then involve the σ=,��  and σ-�,��  estimated results into Models 5 and 6 respectively to measure 

the traditional VaR and COL, and then incorporate traditional VaR and COL together as Model 7 to 

calculate the exogenous liquidity risk effect and traditional LaVaR. We apply Models8 and 9 to 

sensitize the different percentage of trade size effect at 1%, 5% and 6% relatively to 0% assumed, and 

revalue the μ-� and σ-�,��  by Hellinger distance measure. Adopt the new μ-� and σ-�,�� , we measure the 

new COL as Model 10, and recalculate the endogenous liquidity risk effect on traditional LaVaR as 

Model 11 further. The empirical models are presented as  Models1 to 11 in sections 3.2 and 3.3, 

including LaVaR model and the sensitizing analysis endogenous liquidity risk model using the 

Hellinger distance measure. 

 

3.2 Traditional LaVaR 

The traditional LaVaR model simultaneously measures the asset pricing of mean-variance under the 

traditional VaR, and further adjusts for exogenous liquidity risk under the COL. In the first model, we 

build traditional VaR based on Bangia et al. (1999, 2001) and Simonian’s (2001) empirical model, 

which only considers market risk without considering exogenous liquidity or endogenous liquidity, 

assuming the cost of liquidity and the trade size percentage are both zero. The measure calculation is 

expressed as Model 5: VaR = P� ∗ (1 − expP−1.96 ∗ η=,� ∗ σ=,�U), (Model 5) 

VW,X = 1.0 + φ ∗ ln(Z[,\] ), 

where Model 5 is the one-day holding horizon of traditional VaR. P� is the daily closing price in period 

t, σ=,� is Std. Dev. of the return derived by Model 3. For precisely estimating the risk, we use the 

correction factor parameter “VW,X” to modify the bias due to the non-normal distribution (non-N.D.), 

e.g., "leptokurtic" or “fat-tailed” of theprobability density functions of returns. “^W,X” and “φ” are 

respectively the kurtosis coefficient and one-tailed probability 1%. When parameter VW,X is equal 1 and ^W,X is equal to 3, the PDF of returns are N.D. and no adjustment are needed; When parameter VW,X and  
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^W,X are respectively greater than 1 and 3, the PDF of returns deviate significantly from normality and 

the adjustment is needed. (See Bangia et al. (1999, 2001)) 

We then integrate the exogenous liquidity effect and calculate the cost of liquidity. As adjusted by 

Bangia et al. (1999, 2001) and Simonian (2001), the COL formula is expressed as Model 6: 

COL = !1� ∗ Pμ-�,� + a ∗ σ-�,�U, (Model 6) 

where Model 6 isthe one-day holding horizon of cost of liquidity. P� is the daily closing price in period 

t, μ-�,� is the mean spread derived by Model 2, and σ-�,� is Std. Dev. of the mean spread derived by 

Model 4. “a” is the scaling-adjusted parameter for modifying the bias due to non-N.D. effects. We 

assume this parameter is equal 3 based on Simonian’s (2011) model. We incorporate traditional VaR 

and COL together in the traditional LaVaR model. The model could involve exogenous liquidity risk 

and traditional VaR. Thus, the LaVaR formula is expressed as Model 7 (Bangia, 1999, 2001; Shen et 

al., 2002; Simonian, 2011; Si & Fan, 2012; Tsai & Li, 2015; Tsai & Wu, 2016) LaVaR = VaR + COL,    (Model 7) LaVaR = P� ∗ b(1 − expP−1.96 ∗ VW,X ∗ σ=,�U) + 0.5 ∗ (μ-�,� + a ∗ σ-�,�)d. 
 

3.3 Sensitized Endogenous Liquidity by Hellinger Distance Measure 

Following Bogachev (2007) and Simonian (2011) research, we apply Hellinger distance measure to 

calculate the difference between traditional LaVaR and LaVaR adjusted by endogenous liquidity risk. 

The Hellinger distance is one of a family of “f-divergences”, which can be used to estimate the 

distance in probability measures. The probability of this measure is a percentage of trade size and it 

always falls within a range of e0, 1f. The Hellinger distance H(P||Q) is as equivalent to the percentage 

of market trade size (d�), which is between 0% and 100%. The Hellinger distance can be expressed as 

Model 8: 

H(P||Q) = d� = g1 − � �f(x)g(x)dx,    (Model 8) 

where Model8 isthe one-day holding horizon of Hellinger distance. f(x) and g(x) are two probability 

measures of the state space Ω, which could be used to measure the difference between traditional 

LaVaR and endogenous adjusted LaVaR at given trade size percentages. 

However, when the probabilistic allocation is assumed to be absolutely continuous with a σ-finite 

dominating measure and with the normal probability distributions N(μ-�,�, σ-�,�) and N(μ-�,�, σ-�,�), the 

Hellinger distance (d�)can be refined as Model 9: (Lagarias et al., 1998) 

d� = 1 − � �./0,1./:,1./0,1:  h ./:,1: exp (− �i P 8/0,1 78/:,1U:
./0,1: h./:,1: ), (Model 9) 

where Model 9 isthe equation estimated as one-day holding horizon of Hellinger distance. μ-�,� and σ-�,� are the mean spread and Std. Dev. derived by Model 4, which are parameters of 

probability distributions under exogenous liquidity risk (i.e., traditional LaVaR). μ-�,� and σ-�,� are 

respectively the new mean spread and Std. Dev. estimated by Model 9 solved by Nelder-Mead simplex 

algorithm in the Mathematica 10.0 program, which are parameters for probability distributions 

incorporating endogenous liquidity risk by the Hellinger distance measure at market trade sizes (i.e., d� is 1%, 5% and 6%). To include trade size in the model, we treat the trade size percentage as a proxy 

variable to rectify LaVaR. While previous studies assumed the percentage was only 1% in Simonian 

(2011), the present study expands this assumption to 5% and 6%, where 6% is the maximum value 
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based on the actual trading percentage, and 5% is average market trading percentage.
5
The parameters μ-�,� and σ-�,� are solved using the Nelder-Mead simplex algorithm in the Mathematica 10.0 program. 

Finally, we plugμ-�,� and σ-�,� back into Model 10 to recalculate COL, and use the new COL 

and traditional VaR to recalculate the new LaVaR asModel 11. Models 10 and 11 are expressed as 

follows: (Simonian, 2001) COL = !1� ∗ (μ-�,� + a ∗ σ-�,�), (Model 10) LaVaR = VaR + COL, (Model 11) LaVaR = P� ∗ bP 1 − expP−1.96 ∗ η=,� ∗ σ=,�UU + 0.5 ∗ (μ-�,� + a ∗ σ-�,�)d. 
 

3.4 The Back-testing 

Typically, traditional VaR and LaVaR are used to estimate a day-to-day loss at specified left-hand 

critical value of the portfolio's potential loss distribution. The recommended back-testing guideline 

proposed by the BCBS (1996) is to evaluate a 5% VaR model over a 12-month test period 250 trading 

days. (Chen et al., 2012) So, we assume the one-tailed probability is at 5% and the confidence level is 

at 95% to test the consistency between the practical violation rates and theoretical proportion of 

failures. For recording and accumulating the day-to-day proportion of failures (POF), we refer to 

Kupiec’s (1995) opinion and denoted the random variable “n” is the number of time for the whole 

empirical period, and record the consistency between daily ex-post losses and their ex-ante VaR, i.e., 

the consistency between the practical violation rates and proportion of theoretical failures. When the 

accumulated number of failures (i.e., ex-post loss is higher than ex-ante VaR) on given period are αj, 

and the POF recorded is pk , the PDF of POF is a binomial distribution and expressed as following 

Model 12: Prob(pk, αj) = pkoj(1 − pk)p7oj, Model 12 

By the likelihood ratio (LRqrs) unconditional coverage (UC) test, we examine the hypothesis pk=pt that the practical violation rate is equal to theoretical proportion of failures for an accurate VaR 

forecasting method. The LR test statisticsexpressed as following. (see Kupiec’s (1995) and Gerlach et 

al. (2016) POF UC test) LR!uv = χ� − 2Log(ptox(1 − pt)p7ox) + 2Log(pkoj(1 − pk)p7oj), Model 13 

where Model 13 is LR statistics for testing the consistency between daily ex-post losses and ex-ante 

VaR. αj and pk  are number of practical failures and proportion of failures,αt and pt are number of 

theoretical failures and theoretical proportion of failures. 

 

 

4.  Empirical Results 
4.1 Descriptive Statistics 

The descriptive statistics results of 12 qualified SSFs (i.e., CEF, CJF, CKF, CLF, CMF, CNF, DEF, 

DNF, DOF, DPF, LOF and LRF) are shown in Table 3, including average and Std. Dev. values of 

return and bid-ask mean spread, each providing 609 daily data samples.The empirical results indicate 

that CEF has the highest Std. Dev. of return and mean spread, while CJF has the lowest Std. Dev. of 

return and mean spread. Thus, CEF would have higher traditional VaR and LaVaR, while CEF would 

have lower traditional VaR and LaVaR. We refer to the table 2 shown, the underlying stock of CEJ is 

Fubon Financial Holding Co., which ranked second in average asset, and with the first of income, EPS 

and average price. The underlying stock of CJF is Hua Nan Financial Holdings Co., which ranked sixth 

in average asset, income and average price, rank seventh of EPS. 

 

                                                 
5We add the trade size percentages at 1%, 5% and 6% as d� to broaden the scope of consideration. The absolute value of d�is between 0% and 100% and assumed to be equivalent to the trade size percentage. (Bogachev, 2007 and Simonian, 

2011) 
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Table 3: SSFs Return and Mean Spread Descriptive Statistics 

 
Return CEF CJF CKF CLF CMF CNF 

Observations 609 609 609 609 609 609 
Mean 0.0714  0.0006  0.0006  0.0001  0.0001  0.0002  

Std. Dev. 0.052  0.007 0.015  0.011  0.011  0.013  
Return DEF DNF DOF DPF LOF LRF 
Observations 609 609 609 609 609 609 
Mean -0.0002  0.0002  -0.0001  -0.0002  -0.0002  0.0003  
Std. Dev. 0.013  0.013  0.015  0.010  0.008  0.014  
Mean Spread CEF CJF CKF CLF CMF CNF 

Observations 609 609 609 609 609 609 
Mean 0.0056  0.0013  0.0010  0.0024  0.0024  0.0017  
Std. Dev. 0.038  0.001  0.001  0.002  0.001  0.002  
Mean Spread DEF DNF DOF DPF LOF LRF 
Observations 609 609 609 609 609 609 
Mean 0.0024  0.0038  0.0022  0.0023  0.0035  0.0031  

Std. Dev. 0.002  0.008  0.002  0.019  0.021  0.003  

Note:CEF, CJF, CKF, CLF, CMF, CNF, DEF, DNF, DOF, DPF, LOF and LRF are 12 SSFs listed on TAIFEX. The 

description of ticker symbol, underlying stock and financial statement are described in table 2. 

 

To observe the return descriptive statistics of all futures, the range of means od return are 

between -0.0002 and 0.0714, and the Std. Dev. are between 0.007and 0.052. CEF has the highest mean 

and Std. Dev. of return, while LOF has the lowest average return, and CJF has the lowest Std. Dev. of 

return. 

Furthermore, we observe mean spread descriptive statistics of all futures in advance, the range 

of means spread are between 0.0010 and 0.0056, the Std. Dev. are between 0.001 and 0.038. CEF also 

has the highest mean and standard deviation of mean spread, while CKF has the lowest average mean 

spread, CJF, CKF and CMF have lowest Std. Dev. of mean spread. 

 

4.2 Empirical Result on Traditional VaR 

We use return data as a proxy variable to measure traditional market risk and calculate the traditional 

VaR. We first built a Bollerslev (1986) GARCH regression model for all SSFs as Model 3. The 

coefficient β of all SSFs is estimated between 0.713 and 0.959 as presented in Table 4. The empirical 

GARCH results also indicate that the prior period volatility return σ=,�7��  of all SSFs would 

significantly influence the current volatility σ=,��  with quasi maximum likelihood estimation (QMLE) 

(Berndt et al., 1974). The other evaluation of GARCH estimated results, including QMLE, and Akaike 

information criterion (AIC) (Akaile, 1974) are also shown in Table 4. The empirical results show the 

return data follows the non-N.D., stationary, and heteroscedasticity. (Jarque & Bera, 1987; Dickey & 

Fuller, 1979; Engle, 1982). 

 
Table 4: Empirical Results for Single Stock Futures Using the Traditional VaR Model 

 
Futures CEF CJF CKF CLF CMF CNF 

Raw data 

testa 

Normal dist. test 1114.6* 890.0* 985.3* 1308.3* 844.4* 434.4* 

Unit root test -26.016* -29.213* -28.029* -29.128* -29.093* -26.815* 

Heteroscedasticity test 5.205* 4.902* 6.505* 5.345* 6.272* 5.444* 

GARCHb  

y 0.001 0.001 0.001 0.001 0.001 0.001 z 0.880* 0.929* 0.887* 0.959* 0.713* 0.784* 

ρ 0.119 0.828 0.035 0.028 0.064 0.141 

QMLE 1361.7 1502.6 1318.3 1332.9 1370.9 1353.4 

AIC -5.719 -6.314 -5.535 -5.596 -5.758 -5.684 

Average VaRc 0.173 0.021 0.074 0.110 0.061 0.061 

Failure rated 0.098* 0.130* 0.118* 0.090* 0.082* 0.108* 

Futures DEF DNF DOF DPF LOF LRF 
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Futures CEF CJF CKF CLF CMF CNF 

Raw data 

testa 

Normal dist. test 513.2* 474.0* 989.6* 835.7* 458.7* 849.6* 

Unit root test -27.341* -28.731* -28.505* -28.278* -26.443* -27.160* 

Heteroscedasticity test 4.762* 5.012* 5.623* 4.692* 6.392* 5.001* 

GARCHb 

y 0.001 0.001 0.001 0.001 0.001 0.001 z 0.881* 0.872* 0.931* 0.747* 0.866* 0.919* 

ρ -0.052* 0.105 0.330 0.048 0.516 0.053 

QMLE 1332.2 1403.6 1327.9 1340.0 1299.9 1313.7 

AIC -5.745 -6.340 -5.562 -5.623 -5.784 -5.710 

Average VaRc 0.066 0.124 0.122 0.077 0.067 0.076 

Failure rated 0.090* 0.110* 0.082* 0.048 0.044 0.108* 

Note: * reject Ht at α=0.05. 

a. The hypothesis of the autoregressive model is Ht�: The autoregressive model is ”N.D.”, Ht�: The time series is 

non-stationary and Ht]: The autoregressive model is not heteroscedastic. 

b. The hypothesis of the GARCH model is Ht: α=0, β=0 and γ=0.  

c. Traditional VaR is de�ined asModel 5. 

d. The hypothesis of Kupiec’s back-testing is Ht: pk=pt. 

 

Furthermore, we plug μ=,�, σ=,�and P� into Model 5 to calculate the traditional VaR for each 

trade date, and adjust the non-N.D. by correction factor parameter ^W,X. The traditional VaR of 12 SSFs 

are between 0.021 and 0.173. CEF has the highest VaR, while CJF has the lowest VaR.
6
 We then apply 

Kupiec’s (1995) POF test by the null hypothesis Ht: pk=pt, which assumed the practical failure rates 

(αj) are consistent with their theoretical failure rates (αt). By using LRqrs unconditional coverage test, 

we examine the consistency of practical violation rates and proportion of theoretical failures at a 5% 

one-tailed probability and 95% confidence level.
7
 Thus, following Models 12and 13, the empirical 

results shown in Table 4 indicate that the practical failure rates are between 0.044 and 0.133, and only 

DPF and LOF significantly accept the null hypothesis. Thus, it seems that considering only the 

traditional VaR would misjudge the risk, and another risk must be integrated to adjust for this 

condition, e.g., liquidity risk. 

 

4.3 Empirical Result on Traditional LaVaR 

We use the bid-ask mean spread as a proxy variable to measure the exogenous liquidity risk and 

calculate the traditional LaVaR. We first built a Bollerslev (1986) GARCH regression model forall 

SSFs as Model 4. The coefficient θ is estimated between 0.744 and 0.940 as presented in Table 5. The 

empirical GARCH results also indicate that the prior period volatility of mean spread σ-�,�7�
�  would 

significantly influence the current volatility σ-�,�
�  with QMLE (Berndt et al., 1974). The other 

evaluation of GARCH estimated results, including QMLE and AIC, are also shown in Table 5. The 

empirical results show the mean spread data follows the non-N.D., stationary, and 

heteroscedasticity.(Jarque & Bera, 1987; Dickey & Fuller, 1979; Engle, 1982) 

Furthermore, we plug μ
s1,t

, σ-�,�
�  and P� into Model 6 to calculate COL for each trade date by 

scaling-adjusted parameters assumed at 3 as Simonian (2011), which modify the estimated bias due to 

the combined non-N.D. effects. Therefore, we sum up COL and traditional VaR, i.e., traditional 

LaVaR as Model 7. The range of the average COL for all SSFs are between 0.001 and 0.014. The 

range of the average LaVaR for all SSFs are between 0.022 and 0.187. CEF has the highest LaVaR, 

while CJF has the lowest LaVaR.
8
 

                                                 
6 Refer to the table 2 shown, the underlying stock of CEJ is Fubon Financial Holding Co., that ranked second in average 

asset, and with the first of income, EPS and average price. The underlying stock of CJF is Hua Nan Financial Holdings 

Co., that ranked sixth in average asset, income and average price, rank seventh of EPS. 

7When the ex-post loss is higher than ex-ante VaR in a given period, the number of failures αk are accumulated and the POF 

is also recorded. By the likelihood ratio of unconditional coverage test, we examine the hypothesis Ht: pk=pt at one-tailed 

probability and confidence level are respectively 5% and 95%. (Kupiec, 1995; Chan et al., 2012; Gerlach et al., 2016) 

8Refer to footnote6. 
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Moreover, we apply Kupiec’s (1995) POF test and build the null hypothesis Ht: pk=pt assumed 

the practical failure rates (αj) are consistent with their theoretical failure rates (αt). By LRqrs 

unconditional coverage test, we examine the consistency of practical violation rates and proportion of 

theoretical failures at a 5% one-tailed probability and 95% confidence level.
9
 Thus, following Models 

12 and 13, the empirical results shown in Table 5 indicate that the practical failure rates are between 

0.042 and 0.059. According to the results of all likelihood ratio tests shown that 12 SSFs significantly 

accept the null hypothesis. It seems that, by incorporating exogenous liquidity risk and traditional VaR 

together would provide a more appropriate risk level. 

 
Table 5: Empirical Results for Single Stock Futures Using the Traditional LaVaR Model 

 
Futures CEF CJF CKF CLF CMF CNF 

Raw data 

testa 

Normal dist. test 862.5* 872.3* 426.1* 316.1* 989.7* 564.8* 

Unit root test -13.172* -9.227* -12.121* -12.134* -8.334* -9.304* 

Heteroscedasticity test 4.705* 5.364* 4.082* 4.927* 5.179* 6.103* 

GARCHb 

π 0.001 0.001 0.001 0.001 0.001 0.001 

θ 0.940* 0.838* 0.895* 0.884* 0.817* 0.744* 

τ 0.054 0.148 0.035 0.106 0.173 0.235 

QMLE 1457.1 473.6 1639.0 1220.1 1240.6 1145.6 

AIC -6.148 -4.190 -6.918 -5.146 -5.233 -4.831 

Scaling-adjusted parameters a=3: c  

Average COL 0.014 0.001 0.002 0.005 0.005 0.004 

Average LaVaR 0.187 0.022 0.076 0.115 0.066 0.065 

Failure rate 0.057 0.059 0.055 0.052 0.055 0.059 

Futures DEF DNF DOF DPF LOF LRF 

Raw data 

testa 

Normal dist. test 470.3* 725.2* 804.5* 1019.5* 141.8* 154.4* 

Unit root test -9.815* -14.968* -9.040* -11.542* -10.791* -14.114* 

Heteroscedasticity test 4.290* 4.901* 6.399* 5.173* 5.550* 4.937* 

GARCHb 

π 0.001 0.001 0.001 0.001 0.001 0.001 

θ 0.762* 0.872* 0.837* 0.901* 0.783* 0.752* 

τ 0.218 0.105 0.183 -0.002 0.288 0.125 

QMLE 1205.3 1411.1 1290.6 1309.1 1300.9 1267.8 

AIC -6.122 -1.964 -6.892 -5.120 -5.206 -4.805 

Scaling-adjusted parameters a=3: c  

Average COL 0.005 0.013 0.004 0.004 0.008 0.006 

Average LaVaR 0.071 0.137 0.126 0.081 0.075 0.082 

Failure rate 0.055 0.049 0.042 0.048 0.044 0.056 

Note: * reject Ht at α=0.05. 

a. and b. please see the explanations in Table 4. 

c. COL and LaVaR is de�ined asModels 6 and 7. The hypothesis of Kupiec’s back-testing is Ht: pk=pt. 

 

4.4 Empirical Result of Hellinger Distance Measure on LaVaR 

As described in section 4.3, when the scaling-adjusted parameter of traditional LaVaR is set at 3, 12 

SSFs significantly pass the back-testing hypothesis. Thus, we use the traditional LaVaR with a scaling-

adjusted parameter of 3 as a based model to sensitize for the endogenous liquidity risk effect. For 

measuring the endogenous liquidity risk, we use the Hellinger distance measure d�as a series assuming 

different trade sizes.Following the Simonian’s (2011) research, and the average and maximum trade 

size percentages of 12 SSFs in TAIFEX are respectively 5% and 6%, we consider d�at 1%, 5%, and 

6% as proxy variables to measure the incremental adjustment of endogenous liquidity risk on 

traditional LaVaR. By combining the probability measure of the Hellinger distance measure 

characteristics considered in Bogachev’s (2007) and Simonian’s (2011) research, we plug d�,

μ-�,� and σ-�,� together into Model 9 to estimate μ-�,� and σ-�,�, which provide a sensitivity analysis for 

                                                 
9Refer to footnote7. 
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the endogenous liquidity risk. Table 6 shows the empirical results obtained from the Nelder-Mead 

simplex algorithm in Mathematica 10.0 by Model 9. 

By plugging μ-�,� and σ-�,� estimates into the COL calculation as in Model 10, we recalculate the 

new average COL for all SSFs, and incorporating COL and traditional VaR as Model 11, we recalculate the 

new LaVaR. Table 6 shows empirical results that CEF has the highest LaVaR, and CJF has the lowest 

LaVaR of all 12 SSFs.
10

On the whole, the results indicate that μ-�,� and σ-�,� increase with the total market 

trade size percentage (i.e., 1%, 5%, and 6%).It also indicates that integrating endogenous liquidity risk, new 

COL and LaVaR would increase with trade size, and that are larger than the LaVaR only exogenous 

liquidity risk considered. The result of new COL and LaVaR are as followings: 

(a) At 1% of market trade size, the COL of all SSFs are between 0.0022 and 0.0710. We then 

sum up the traditional VaR and the COL. The LaVaR of all SSFs is between 0.0232 and 

0.2440. 

(b) At 5% of market trade size, the COL of all SSFs is between 0.0337 and 0.2252, and the 

total LaVaR is between 0.0547 and 0.3982. 

(c) At 6% of market trade size, the COL of all SSFs is between 0.0495 and 0.3797, and the 

LaVaR is between 0.0705 and 0.5527. 

To evaluate the accuracy of the new LaVaR model, we apply Kupiec’s (1995) POF test and 

build the null hypothesis Ht: pk=pt assumed the practical failure rates (αj) are consistent with their 

theoretical failure rates (αt). By LRqrs unconditional coverage test, we examine the consistency of 

practical violation rates and proportion of theoretical failures at a 5% one-tailed probability and 95% 

confidence level.
11

 Thus, for counting the number of failure rates and test the consistency, we follow 

the Models 12 and 13. The practical failure rates shown in Table 6 are between 0.042 and 0.059, and 

according to likelihood ratio test, 12 SSFs are all significantly accept the null hypothesis. It seems that, 

by incorporating endogenous liquidity risk would provide an appropriate risk level. 

 
Table 6: Empirical Results for SSFs Sensitized to Trade Size in LaVaR 

 
Futures CEF CJF CKF CLF CMF CNF 

Trade Size 

Percentagea, b 

1% 

Average μ
-�,�

 0.0141 0.0019 0.0029 0.0029 0.0031 0.0028 Average σ-�,� 0.0100 0.0001 0.0010 0.0029 0.0028 0.0001 

Average COL 0.0710 0.0022 0.0059 0.0116 0.0115 0.0031 

Average LaVaR 0.2440 0.0232 0.0799 0.1216 0.0725 0.0641 

Failure rate 0.057 0.059 0.055 0.052 0.055 0.059 

5% 

Average μ-�,� 0.0472 0.0250 0.0414 0.0420 0.0427 0.0046 Average σ-�,� 0.0460 0.0029 0.0046 0.0047 0.0047 0.0419 

Average COL 0.2252 0.0337 0.0552 0.0561 0.0568 0.1303 

Average LaVaR 0.3982 0.0547 0.1292 0.1661 0.1178 0.1913 

Failure rate 0.057 0.059 0.055 0.052 0.055 0.059 

6% 

Average μ-�,� 0.1034 0.0378 0.0541 0.0636 0.0652 0.0835 Average σ-�,� 0.0921 0.0039 0.0072 0.0093 0.0092 0.0093 

Average COL 0.3797 0.0495 0.0757 0.0915 0.0928 0.1114 

Average LaVaR 0.5527 0.0705 0.1497 0.2015 0.1538 0.1724 

Failure rate 0.057 0.059 0.055 0.052 0.055 0.059 

 

 

 

 

 

 

                                                 
10Refer to footnote6. 

11Refer to footnote7. 
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Futures DEF DNF DOF DPF LOF LRF 

Trade Size 

Percentagea, b 

1% 

Average μ-�,� 0.0029 0.0040 0.0028 0.0029 0.0089 0.0038 Average σ-�,� 0.0029 0.006 0.0029 0.0034 0.0007 0.0330 

Average COL 0.0116 0.0199 0.0115 0.0131 0.0040 0.1028 

Average LaVaR 0.0776 0.1439 0.1335 0.0901 0.0710 0.1788 

Failure rate 0.055 0.049 0.042 0.048 0.044 0.056 

5% 

Average μ-�,� 0.0422 0.0166 0.0039 0.0420 0.0494 0.0421 Average σ-�,� 0.0051 0.0072 0.0047 0.0048 0.0042 0.0046 

Average COL 0.0575 0.0382 0.0180 0.0564 0.0621 0.0559 

Average LaVaR 0.1235 0.1622 0.1400 0.1334 0.1290 0.1319 

Failure rate 0.055 0.049 0.042 0.048 0.044 0.056 

6% 

Average μ-�,� 0.0639 0.0203 0.0251 0.0644 0.0742 0.0737 Average σ-�,� 0.0093 0.0086 0.0074 0.0092 0.0095 0.0084 

Average COL 0.0918 0.0461 0.0473 0.0920 0.1027 0.0989 

Average LaVaR 0.1578 0.1701 0.1693 0.1690 0.1697 0.1749 

Failure rate 0.055 0.049 0.042 0.048 0.044 0.056 

Note: * reject Ht at α=0.05. 

a. ��is 0% as Bangia et al. (1999, 2001) model; 1% is as Simonian (2011) model. 6% and 5% are the maximum and 

average value based on the actual trading percentage. The new  μ-�,� and σ-�,� are estimated by Model 9, i.e., �� . 

b. New COL and LaVaR is de�ined as Models 10 and 11. The hypothesis of Kupiec’s back-testing is Ht: pk=pt. 

 

 

5.  Conclusions 
This paper uses the empirical model following Bangia et al. (1999, 2001) in dividing liquidity risk into 

exogenous and endogenous types. However, Bangia et al. (1999, 2001) exclusively emphasize COL 

and exogenous liquidity risk calculations, without accounting for endogenous liquidity risk. We use 

Simonian’s (2001) empirical concept incorporating the Hellinger distance measure to calculate the 

effect of percentage of trade size and modify the endogenous liquidity risk for the exogenous LaVaR. 

Simonian (2011) only sensitizes the liquidity effect at the trade size 1% assumed, thus we add trade 

size percentages at 1%, 5% and 6% to broaden the scope of consideration. By sensitizing these three 

different trade size effects to value the endogenous liquidity effect on traditional LaVaR, we 

recalculate new μ-�,� and σ-�,�, then revalue the new COL, and plug COL to measure the new LaVaR. 

Thus, the major contribution of this paper is to incorporate the endogenous liquidity risk effect and re-

estimate the exogenous LaVaR using the Hellinger distance measure. 

By combining the probability measure of the Hellinger distance characteristics, applying 

sensitivity analysis to involve the endogenous liquidity risk, and adjusting the traditional LaVaR 

considered at the exogenous liquidity risk, the major research findings are as follows:  

(a) The empirical results of traditional VaR are between 0.021 and 0.173. 

(b) The empirical results of the traditional LaVaR between 0.022 and 0.187. 

(c) The empirical results of LaVaR adjusted by endogenous liquidity risk are between 0.0232 

and 0.5527. 

On the whole, CEF produces the highest LaVaR, while CJF has the lowest LaVaR for all SSFs. 

Applying Kupiec’s (1995) POF test, the practical failure rates of all SSFs are largely consistent with 

their theoretical failure rates in traditional LaVaR model and new LaVaR adjusted by endogenous 

liquidity risk. 
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